Traffic Impact Study

for the proposed

Townhomes at Dryden

Town of Dryden Tompkins County, New York

September 2018
Project No. 38053

Prepared For:

Prepared By:

3495 Winton Place Building E, Suite IIO Rochester, New York 14623

TABLE OF CONTENTS

LIST OF TABLES ii
LIST OF FIGURES ii
LIST OF APPENDICES ii
LIST OF REFERENCES iii
EXECUTIVE SUMMARY iv
I. INTRODUCTION
II. LOCATION I
III. EXISTING HIGHWAY SYSTEM I
IV. EXISTING TRAFFIC CONDITIONS 2
A. Peak Intervals for Analysis 2
B. Existing Traffic Volume Data2
C. Field Observations 2
V. FUTURE AREA DEVELOPMENT AND LOCAL GROWTH 3
VI. PROPOSED DEVELOPMENT 3
A. Description 3
B. Site Traffic 3
C. Determination of Multi-use (Internal) and Pass-by Trips 5
D. Site Traffic Distribution 6
VII. FULL DEVELOPMENT VOLUMES 7
VIII. CAPACITY ANALYSIS 7
IX. TRAFFIC GAP ANALYSIS II
X. LEFT TURN TREATMENT WARRANT INVESTIGATION 12
XI. TRANSPORTATION DEMAND MANAGEMENT PLAN 12
XII. CONCLUSIONS \& RECOMMENDATIONS 14
XIII. FIGURES 15
TABLE I EXISTING HIGHWAY SYSTEM
TABLE II TOTAL SITE GENERATED TRIPS 4
TABLE III COMPARISON OF TRIPS FOR OFF-CAMPUS STUDENT HOUSING 4
TABLE IV SITE GENERATED TRIPS AND ADJUSTMENTS 6
TABLE V CAPACITY ANALYSIS RESULTS 8
TABLE VI PEAK HOUR GAP ANALYSIS RESULTS II
TABLE VII BENEFITS OF TDM PROGRAMS. 12
TABLE VIII TDM STRATEGIES 13

LIST OF FIGURES

FIGURE I SITE LOCATION \& STUDY AREA
FIGURE 2 LANE GEOMETRY \& AVERAGE DAILY TRAFFIC
FIGURE 3 PEAK HOUR VOLUMES - 2018 EXISTING BASE CONDITIONS
FIGURE 4 PEAK HOUR VOLUMES - 2020 BACKGROUND CONDITIONS
FIGURE 5 CONCEPT SITE PLAN
FIGURE 6A TRIP DISTRIBUTION - RESIDENTIAL
FIGURE 6B TRIP DISTRIBUTION - COFFEE/DONUT SHOP
FIGURE 6C TRIP DISTRIBUTION - RETAIL
FIGURE 7A SITE GENERATED TRIPS - RESIDENTIAL
FIGURE 7B SITE GENERATED TRIPS - COFFEE/DONUT SHOP
FIGURE 7C SITE GENERATED TRIPS - RETAIL
FIGURE 7D TOTAL SITE GENERATED TRIPS
FIGURE 8 PEAK HOUR VOLUMES - FULL DEVELOPMENT CONDITIONS

LIST OF APPENDICES

AI. COLLECTED TRAFFIC VOLUME DATA
A2. MISCELLANEOUS TRAFFIC DATA AND CALCULATIONS
A3. LOS CRITERIA/DEFINITIONS
A4. LEVEL OF SERVICE CALCULATIONS - EXISTING CONDITIONS
A5. LEVEL OF SERVICE CALCULATIONS - BACKGROUND CONDITIONS
A6. LEVEL OF SERVICE CALCULATIONS - FULL DEVELOPMENT CONDITIONS
I. Highway Capacity Manual 6th Edition. Transportation Research Board (TRB). The National Academies, Washington, DC. 2016.
2. Trip Generation, $10^{\text {th }}$ Edition. Institute of Transportation Engineers (ITE). Washington, DC. 2017.
3. Manual on Uniform Traffic Control Devices for Street and Highways (MUTCD). Federal Highway Administration (FHWA). 2009.
4. Trip Generation Handbook, 3rd Edition. ITE. 2014.
5. National Cooperative Highway Research Program (NCHRP) Report 279: Intersection Channelization Design Guide. TRB. 1985.
6. NCHRP Report 684: Enhancing Internal Trip Capture Estimation for Mixed-use Developments. TRB. 2011.
7. New York State Department of Transportation (NYSDOT) Traffic Data Viewer. Retrieved from https://www.dot.ny.gov/tdv. 2018.

EXECUTIVE SUMMARY

OVERVIEW

The purpose of this report is to evaluate the potential traffic impacts associated with the proposed Townhomes at Dryden project in the Town of Dryden, Tompkins County, New York. Within this report, the operating characteristics of the proposed access drives and impacts to the adjacent roadway network are identified, and mitigating measures, if needed, are provided to minimize capacity or safety concerns.

In an effort to define traffic impact, this analysis establishes existing traffic conditions, projects background traffic flow including area growth, and determines the traffic operations that would result from the proposed project.

The project site is located adjacent the intersection of NYS Route 366/Freese Road/Mt. Pleasant Road in the Town of Dryden, New York with frontage along NYS Route 366 (Dryden Road) and Mt. Pleasant Road. The project site is bounded by residential development and NYS Route 366 to the north; Mt. Pleasant Road and farmland to the east; farmland and forested land to the south; and forest land and a vehicle service center to the west. Land uses within the study area predominately consist of agricultural, residential, and service uses. The project site is currently undeveloped.

The study area, coordinated with the New York State Department of Transportation and Town of Dryden, includes the following existing intersections along NYS Route 366 at:
I. Freese Road/Mt. Pleasant Road
2. Game Farm Road/Arboretum Center

The proposed project consists of constructing:

- 219 units/602 beds of townhomes style housing targeting the college student demographic.
- $2, I I 2 \pm$ square feet (SF) of retail space conceptually proposed as:
o $800 \pm$ SF coffee/donut shop
o $\mathrm{I}, 3 \mathrm{I} 2 \pm$ SF specialty retail
Access will be provided via three new driveways: one along NYS Route 366 and two along Mt. Pleasant Road. The proposed northerly driveway along Mt. Pleasant Road will be limited access and restrict left-turns from exiting the driveway.

Construction of the proposed project is anticipated to reach full build-out in approximately two years. The Town of Dryden was contacted to discuss any other specific developments that are currently approved or under construction that would generate additional traffic in the study area. Three projects were identified: the Cottages at Fall Creek Crossing, 802 Dryden Road Townhomes, and I06I Dryden Road Townhomes. Traffic generated by these projects may have a longer timeframe than the proposed build-out of the proposed project. However, to remain conservative, this traffic was added to the study area intersections for the build-out period.

To account for normal increases in background traffic growth, including any unforeseen developments in the project study area aside from the aforesaid developments, a growth rate of 0.5% has been applied to the existing traffic volumes in the study area based on historical traffic volumes.

CONCLUSIONS \& RECOMMENDATIONS

This study identifies and evaluates the potential traffic impacts that can be expected from the proposed Townhomes at Dryden project in the Town of Dryden, New York. The results of this study determine that the existing transportation network can adequately accommodate the projected traffic volumes and resulting impacts to study area intersections. The following sets forth the conclusions and recommendations based upon the results of the analyses:
I. The proposed project is expected to generate approximately 59 entering/IIO exiting vehicle trips during the AM peak hour and 120 entering/96 exiting vehicle trips during the PM peak hour. Not all these driveway volumes are new, but instead a portion of the proposed volume is reduced considering internal and pass-by adjustments. Thus, the proposed project is expected to generate approximately 25 entering/70 exiting new vehicle trips during the AM peak hour and 91 entering/69 exiting new vehicle trips during the PM peak hour.
2. It is also recognized that there is variability in the trip generation associated with the student housing program. Variables affecting trip generation can be campus parking policies, class schedules, shuttle service, and other demand management strategies (e.g., carpooling). These variables can have the net effect of reducing total site generated trips.
3. Based upon the expected delays under full development, the following is recommended at NYS Route 366/Game Farm Road/Arboretum Center. Periodic snapshots of actual traffic operations at this intersection and proposed site driveways (to determine actual trip generation and distribution rates and patterns) are recommended as part of a Monitoring and Mitigation Plan to determine if/when the identified improvements are justified.
a. Based on a preliminary Traffic Signal Warrant Investigation using available turning movement count data, conditions for a traffic signal are partially met under existing and full build conditions. A full Traffic Signal Warrant Investigation includes nine warrants, as per the Manual on Uniform Traffic Control Devices (2009), three of which are volume-related warrants: Eight-Hour, Four-Hour, and Peak Hour. This study reviewed the Four-Hour and Peak Hour warrants. The New York State Department of Transportation (NYSDOT) bases justification for installing traffic signals on these strict guidelines as there are pros and cons to installing this traffic control device. This intersection should be monitored as nearby approved development progresses and future traffic volumes materialize.
b. It is important to note that based on available hourly data obtained by the NYSDOT, conditions will be satisfactory for most hours of the typical day, save for the AM peak hour, as evidenced by the projected capacity analysis results.
c. More detailed studies, including delay, gap and crash analyses should be performed to fully assess if/when a potential traffic signal is justified.
d. Any future capacity improvements should be coordinated with the New York State Department of Transportation, Tompkins County, the Towns of Ithaca and Dryden, and project sponsors of future developments to determine if these improvements are necessary.
e. To note, a $\mathbf{1 5}-20 \%$ reduction in student-associated trip generation estimates as a result of demand management strategies (discussed later in this report) can
reduce northbound AM peak hour projected delays at this intersection by up to 45 seconds.
4. An existing Traffic Gap Analysis along NYS Route 366 at the intersections with Freese Road/Mt. Pleasant Road and Game Farm Road showed that there are sufficient gaps during the critical AM peak hour to accommodate the existing left-turn movements exiting the minor side roads onto NYS Route 366.
5. The proposed access drives shall be stop-controlled for their approaches to the adjacent roadways.
6. The results of the Left-Turn Treatment Warrant Investigation at the proposed access driveway along NYS Route 366 show that left-turn treatments are not warranted during the peak hours.
7. Transportation Demand Management (TDM) strategies are recommended to reduce travel and parking demands.
a. The application of TDM strategies align with the goals and strategies outlined in the June 2008 Cornell University Transportation Impact Mitigation Strategies report.
b. When taken together and appropriately applied, TDM strategies may result in a travel and parking demand reduction of up to 15-20\%.
c. A monitoring plan can be established to measure the effectiveness of these, or other, strategies in reducing travel demand.
8. The proposed project will result in traffic impacts to the study area intersections that can be appropriately accommodated via TDM strategies and potentially mutually coordinated improvements, as outlined in this study.

I. INTRODUCTION

The purpose of this report is to evaluate the potential traffic impacts associated with the proposed Townhomes at Dryden project in the Town of Dryden, Tompkins County, New York. Within this report, the operating characteristics of the proposed access drives and impacts to the adjacent roadway network are identified, and mitigating measures, if needed, are provided to minimize capacity or safety concerns.

In an effort to define traffic impact, this analysis establishes existing traffic conditions, projects background traffic flow including area growth, and determines the traffic operations that would result from the proposed project.

II. LOCATION

The project site is located adjacent the intersection of NYS Route 366/Freese Road/Mt. Pleasant Road in the Town of Dryden, New York with frontage along NYS Route 366 (Dryden Road) and Mt. Pleasant Road. The project site is bounded by residential development and NYS Route 366 to the north; Mt. Pleasant Road and farmland to the east; farmland and forested land to the south; and forest land and a vehicle service center to the west. Land uses within the study area predominately consist of agricultural, residential, and service uses. The project site is currently undeveloped.

The study area, coordinated with the New York State Department of Transportation and Town of Dryden, includes the following existing intersections along NYS Route 366 at:
I. Freese Road/Mt. Pleasant Road
2. Game Farm Road/Arboretum Center

The site location and study area are illustrated in Figure I (all Figures are included at the end of this report).

III. EXISTING HIGHWAY SYSTEM

The following information outlined in Table I provides a description of the existing roadway network within the project study area. Figure $\mathbf{2}$ illustrates the lane geometry at each of the study intersections and the Average Daily Traffic (ADT) volumes on the study roadways.

TABLE I
 EXISTING HIGHWAY SYSTEM

ROADWAY	ROUTE'	FUNC. CLASS ${ }^{2}$	JURIS. ${ }^{3}$	SPEED LIMIT 4	\# OF TRAVEL LANES ${ }^{5}$	TRAVEL PATTERN/ DIRECTION	$\begin{aligned} & \text { EST. } \\ & \text { ADT }^{6} \end{aligned}$	AADT SOURCE ${ }^{7}$
Dryden Road	NYS Rte 366	Minor Arterial	NYSDOT	30-45	2	Two-way/ East-West	7,126	NYSDOT (2013)
Freese Road	-	Local	Town of Dryden	30	2	Two-way/ North-South	2,500	$\begin{aligned} & \text { SRFA } \\ & (2017) \end{aligned}$
Mt. Pleasant Road	-	Local	Town of Dryden	30	2	Two-way/ North-South	I,800	$\begin{array}{r} \text { SRFA } \\ (2017) \\ \hline \end{array}$

| ROADWAY | ROUTE' $^{\text {RO }}$ | FUNC.
 CLASS 2 | JURIS. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Notes:
I. "NYS" = New York State; "CR" = County Road.
2. State Functional Classification of Roadway: All are Urban.
3. Jurisdiction: "NYSDOT" = New York State Department of Transportation.
4. Posted or Statewide Limit in Miles per Hour (MPH).
5. Excludes turning/auxiliary lanes developed at intersections.
6. Estimated ADT in Vehicles per Day (VPD).
7. Source (Year). SRF Associates (SRFA) volumes determined via an extrapolation of turning movement counts.

IV. EXISTING TRAFFIC CONDITIONS

A. Peak Intervals for Analysis

Given the functional characteristics of the corridors, adjacent land uses, and the proposed land uses for the project site (residential, coffee/donut shop, small scale retail), the peak hours selected for analysis are the weekday commuter AM and PM peak periods.

B. Existing Traffic Volume Data

Turning movement traffic counts were collected on Wednesday, May 3, 2017 by SRF Associates (SRFA) at the study area intersections. Traffic counts were conducted between 7:00-9:00 AM and 4:00-6:00 PM during the weekday commuter AM and PM peak periods, respectively. The peak hour traffic periods generally occurred between 7:30-8:30 AM and 4:00-5:00 PM.

All turning movement count data was collected on a typical weekday while local schools, universities, and colleges were in session. There were no adverse weather conditions. To obtain the 2018 existing base condition volumes at the study intersections, a conservative growth rate of I.5\% was applied to the collected traffic volume counts for a one-year period. Additionally, the Town of Dryden was consulted to determine if any development had occurred between the time of data collection and established 2018 base condition. No projects were identified. The base weekday AM and PM peak hour volumes are reflected in Figure 3.

C. Field Observations

The study intersections were observed during both peak intervals to assess current traffic operations. A Traffic Gap Analysis (described in detail later in this report) was performed. This information was used to support and/or calibrate capacity analysis models described in detail later in this report.

V. FUTURE AREA DEVELOPMENT AND LOCAL GROWTH

Construction of the proposed project is anticipated to reach full build-out in approximately two years. The Town of Dryden was contacted to discuss any other specific developments that are currently approved or under construction that would generate additional traffic in the study area. Three projects were identified: the Cottages at Fall Creek Crossing, 802 Dryden Road Townhomes, and I06I Dryden Road Townhomes. Traffic generated by these projects may have a longer timeframe than the proposed build-out of the proposed project. However, to remain conservative, this traffic was added to the study area intersections for the build-out period.

To account for normal increases in background traffic growth, including any unforeseen developments in the project study area aside from the aforesaid developments, a growth rate of 0.5% has been applied to the existing traffic volumes in the study area based on historical traffic volumes. The background traffic volumes are depicted in Figure 4.

VI. PROPOSED DEVELOPMENT

A. Description

The proposed project consists of constructing:

- 219 units/602 beds of townhomes style housing targeting the college student demographic.
- $2, I I 2 \pm$ square feet (SF) of retail space conceptually proposed as:
o $800 \pm$ SF coffee/donut shop
o I,3I2 \pm SF specialty retail
Access will be provided via three new driveways: one along NYS Route 366 and two along Mt. Pleasant Road. The proposed northerly driveway along Mt. Pleasant Road will be limited access and restrict left-turns from exiting the driveway. Figure 5 illustrates the proposed concept plan.

B. Site Traffic

The volume of traffic generated by a site is dependent on the intended land use and size of the development. Trip generation is an estimate of the number of trips generated by a specific building or land use. These trips represent the volume of traffic entering and exiting the development. Trip Generation, $10^{\text {th }}$ Edition (2017) published by the Institute of Transportation Engineers (ITE) is used as a reference for this information. The trip rate for the peak hour of the generator may or may not coincide in time or volume with the trip rate for the peak hour of adjacent street traffic. Volumes generated during the peak hour of the adjacent street traffic and proposed land uses, in this case the weekday commuter AM and PM peaks, represent a more critical volume when analyzing the capacity of the system; those intervals will provide the basis of this analysis.

According to the ITE, the following steps are recommended when determining trip generation for proposed land uses:
I. Check for the availability of local trip generation rates for comparable uses.
2. If local trip data for similar developments are not available and time and funding permit, conduct trip generation studies at sites with characteristics similar to those of the proposed development.

Trip generation estimates for the proposed residential units were based on proxy site trip generation rates through data collected at off-campus student housing developments at nearby Ithaca College, University at Buffalo, and SUNY Brockport. Using this information, AM and PM peak hour trip rates were determined based on the number of existing residents (average of 495 residents) living on-site. It should be noted that no trip reduction credits were applied to the projected estimates as the sites are currently serviced by complimentary shuttle service to/from the nearby campuses. Shuttle service is proposed for the proposed project.

The trip rate determined from these sites was compared to ITE data for off-campus student housing projects greater than $1 / 2$-mile from campus and was found to be comparable, if not slightly more conservative, especially during the PM peak hour.

Table II shows the total site generated trips for the weekday commuter AM and PM peak hours for the proposed project. All trip generation information has been included in the Appendices.

TABLE II
 TOTAL SITE GENERATED TRIPS

DESCRIPTION	ITE LAND	SIZE	AM PEAK		PM PEAK	
	USE CODE			ENTER	EXIT	ENTER
	EXIT					
Off-Campus Student Housing	-	602 Beds	16	68	93	69
Coffee/Donut Shop without Drive-	936	$800 \pm$ SF	41	40	15	14
Through Window	820	$1,312 \pm$ SF	2	2	12	13
Specialty Retail			$\mathbf{5 9}$	$\mathbf{1 1 0}$	$\mathbf{1 2 0}$	$\mathbf{9 6}$
Total Site Generated Trips						

A comparison between ITE rates and local rates for off-campus student housing was performed and is shown in the following table.

TABLE III
 COMPARISON OF TRIPS FOR OFF-CAMPUS STUDENT HOUSING

DESCRIPTION	ITE LAND USE CODE	SIZE	AM PEAK		PM PEAK	
			ENTER	EXIT	ENTER	EXIT
Off-Campus Student Housing (Proxy)	-	602 Beds	16	68	93	69
Off-Campus Student Housing (ITE)		602 Beds	15	69	75	75
Trip Generation Comparison			+1	-1	+18	-6

Compared to using ITE trip rates, the proxy site trip rate generates an equal amount of traffic during the AM peak hour and 12 vehicles trips greater during the PM peak hour. Additionally, proxy site trip rates

C. Determination Multi-use (Internal) and Pass-by Trips

Inherent in the trip generation estimates for the proposed project is the "multi-use" traffic component of traffic entering and exiting the site. According to the Institute of Transportation Engineers Trip Generation Handbook, 3rd Edition (2014), "...a multi-use development is typically a single real-estate project that consists of two or more ITE land use classifications between which trips can be made without using the off-site road system. Because of the nature of these land uses, the trip-making characteristics are interrelated, and some trips are made among the on-site uses. This capture of trips internal to the site has the net effect of reducing vehicle trip generation between the overall development site and the external street system (compared to the total number of trips generated by comparable, standalone sites)." "In some multi-use developments, these internal trips can be made by walking or by vehicles entirely on internal pathways or internal roadways without using streets external to the site."

The ITE Trip Generation Handbook indicates internal capture rates for trips within a multiuse development to vary between residential, office, retail, restaurant, and entertainment and recreational uses during the AM and PM peak hours. Given the area in which the project site is located, the proposed land use components, and interconnection between these components, multi-use (or multiple purpose) total volume trips will likely occur.

Therefore, it is estimated, based on methods in the ITE Trip Generation Handbook using the recommended National Cooperative Highway Research Program (NCHRP) Report 684: Enhancing Internal Trip Capture Estimation for Mixed-use Developments spreadsheet model, that an approximate 12%, and 17% internal reduction credit in total trip generation for the site should be used during the AM and PM peak periods, respectively.

These multi-use trip projection adjustments were applied to the respective site generated trips and subtracted from the traffic entering and exiting the site during the AM and PM peak periods. The interactive spreadsheet considers baseline mode shares and vehicle occupancy factors for the proposed land uses, as described in the Trip Generation Handbook, as well as average land use interchange distances (feet walking distance) to determine the internal capture percentage. This completed spreadsheet model is included in the Appendices.

Additionally, for certain types of developments, the total number of trips generated is different from the amount of new traffic added to the adjacent highway network by the generator. Service-oriented developments (i.e., shopping centers, banks, restaurants, and coffee/donut shops) often locate adjacent to busy streets to attract the motorists already passing the site on the adjacent street; in this case NYS Route 366. These sites attract a portion of their trips from traffic passing the site. The "pass-by" traffic refers to the amount of existing traffic already on the roadway adjacent to the site that, as it "passes by" the site, will enter the site driveways to patronize the project site. The quantifying of "pass-by" trips has the net result of reducing the volume of new traffic that is added to the site driveways and/or adjacent roadways.

This site and proposed land use are likely to exhibit some level of pass-by traffic. The ITE Trip Generation Handbook does not have data for a Coffee/Donut Shop without Drive-Through Window. Therefore, the most appropriate pass-by rate for this proposed land use was approximated by evaluating pass-by rates for other similar uses and a general knowledge of coffee/donut shop operations. Pass-by data for a Coffee/Donut Shops with Drive-Through Window was consulted and was determined to have an average pass-by rate of 89%. The average pass-by rate for a High-Turnover (Sit-Down) Restaurant is 43% during the PM peak
hour. Given that the proposed coffee/donut shop does not have a drive-thru window, passby rates are likely to be somewhat lower than the documented 89% rate for facilities with a drive-thru window. Further, pass-by rates are likely to be higher than the documented 43% rate for a High-Turnover (Sit-Down) Restaurant. As a result, and based on our experience for other coffee/donut shop facilities, pass-by rates of 70% and 50% are assumed for the AM and PM peak hours, respectively.

Pass-by rates during the PM peak period for retail uses based on ITE data range from 8% to 74% for retail uses (average 34\%). A conservative pass-by rate of 20% is assumed for the PM peak hour.

Table IV shows the total site generated trips, internal trips, pass-by trips, and resulting primary trips that are added to the existing highway system for full development of the project.

TABLE IV GENERATED TRIPS AND ADJUSTMENTS

DESCRIPTION	ITE LAND	SIZE	AM PEAK		PM PEAK	
			ENTER	EXIT	ENTER	EXIT
Off-Campus Student Housing	-	602 Beds	16	68	93	69
Coffee/Donut Shop without Drive-	936	$800 \pm$ SF	41	40	15	14
Through Window	820	$1,312 \pm$ SF	2	2	12	13
Specialty Retail			$\mathbf{5 9}$	$\mathbf{1 1 0}$	$\mathbf{1 2 0}$	$\mathbf{9 6}$
Total Site Generated Trips			-9	-11	-19	-18
Internal Adjustment		-23	-27	-5	-3	
Pass-by Adjustment		$\mathbf{2 5}$	$\mathbf{7 0}$	$\mathbf{9 1}$	$\mathbf{6 9}$	
Total Primary (New) Trips						

The proposed project is expected to generate approximately 59 entering/I 10 exiting vehicle trips during the AM peak hour and I20 entering/96 exiting vehicle trips during the PM peak hour. Not all these driveway volumes are new, but instead a portion of the proposed volume is reduced considering internal and pass-by adjustments. Thus, the proposed project is expected to generate approximately 25 entering/70 exiting new vehicle trips during the AM peak hour and 91 entering/69 exiting new vehicle trips during the PM peak hour.

It is also recognized that there is variability in the trip generation associated with the student housing program. Variables affecting trip generation can be campus parking policies, class schedules, shuttle service, and other demand management strategies (e.g., carpooling). These variables can have the net effect of reducing total site generated trips.

D. Site Traffic Distribution

The cumulative effect of site-generated traffic on the transportation network is dependent on the origins and destinations of that traffic and the location of the access drives serving the site. The proposed arrival/departure distribution of traffic generated by the proposed project is considered a function of several parameters, including:

- Proximity to Cornell University;
- Site access driveway locations and internal roadway layout;
- Commercial centers in the area;
- Existing traffic patterns; and
- Existing traffic conditions and controls

Figures 6A-6C show the anticipated trip distribution pattern percentages for the traffic from the proposed project; residential, coffee/donut shop, and retail, respectively. Figures 7A-7C illustrate the peak hour site-generated traffic based on those percentages, respectively. Figure 7D illustrates the total site generated trips.

VII. FULL DEVELOPMENT VOLUMES

The projected design hour traffic volumes were developed for the AM and PM peak hours by combining the background traffic conditions (Figure 4) and the new site-generated traffic volumes (Figure 7D) to yield the total traffic conditions expected at full development. The resulting design hour volumes for the proposed project are illustrated in Figure 8 under full build-out conditions.

VIII. CAPACITY ANALYSIS

Capacity analysis is a technique used for determining a measure of effectiveness for a section of roadway and/or intersection based on the number of vehicles during a specific time period. The measure of effectiveness used for the capacity analysis is referred to as a Level of Service (LOS). Levels of Service are calculated to provide an indication of the amount of delay that a motorist experiences while traveling along a roadway or through an intersection. Since the most amount of delay to motorists usually occurs at intersections, capacity analysis typically focuses on intersections, as opposed to highway segments.

Six Levels of Service are defined for analysis purposes. They are assigned letter designations, from "A" to "F", with LOS "A" representing the best conditions and LOS "F" the worst. Suggested ranges of service capacity and an explanation of Levels of Service are included in the Appendices.

The standard procedure for capacity analysis of signalized and un-signalized intersections is outlined in the Highway Capacity Manual (HCM) 6th Edition (2016) published by the Transportation Research Board (TRB). Traffic analysis software, SYNCHRO IO, which is based on procedures and methodologies contained in the HCM, was used to analyze operating conditions at study area intersections. The procedure yields a LOS based on the HCM 6th Edition as an indicator of how well intersections operate.

Traffic simulations discussed in this report were performed using an extension of the SYNCHRO intersection analysis software called SimTraffic. SimTraffic is a microscopic, dynamic traffic simulation model that considers the traffic flow and gap conditions at intersections and can more accurately reflect actual operating conditions.

Existing and background operating conditions during the peak study periods are evaluated to determine a basis for comparison with the projected future conditions. The future traffic conditions generated by the project were analyzed to assess the operation of the study area intersections. Capacity results for existing, background, and full development conditions are listed in Table V. The discussion following the table summarizes capacity conditions.

TABLE V
 CAPACITY ANALYSIS RESULTS

INTERSECTION	$\begin{gathered} 2018 \\ \text { EXISTING } \\ \text { CONDITIONS } \end{gathered}$				$\begin{gathered} 2020 \\ \text { BACKGROUND } \\ \text { CONDITIONS } \\ \hline \end{gathered}$				$\begin{gathered} 2020 \\ \text { FULL BUILD } \\ \text { CONDITIONS } \end{gathered}$							
	AM		PM		AM		PM		AM		PM					
NYS Route 366/Freese Rd/ Mt Pleasant Rd																
EB - NYS Route 366	A	3.0	A	3.4	A	3.2	A	3.4	A	3.5	A	3.5				
WB - NYS Route 366	A	1.2	A	0.6	A	1.5	A	0.6	A	1.4	A	0.9				
NB - Mt Pleasant Rd	D	27.8	C	16.8	E	39.7	C	16.6	E	38.9	C	24.6				
SB - Freese Rd	C	15.4	C	18.4	C	18.5	C	19.2	C	22.1	E	41.6				
Mt Pleasant Rd/ Proposed Northerly Dwy																
EB - Mt Pleasant Rd	NA		NA		NA		NA		A	1.1	A	1.9				
WB - Mt Pleasant Rd			A	0.1			A	0.1								
NB - Proposed Northerly Dwy			A	1.7			A	2.2								
Mt Pleasant Rd Proposed Southerly Dwy																
EB - Mt Pleasant Rd	NA				NA				NA		NA		A	0.2	A	0.2
WB - Mt Pleasant Rd			A	0.1			A	0.0								
NB - Proposed Southerly Dwy			A	2.0			A	2.7								
NYS Route 366/ Proposed Dwy																
EB - NYS Route 366	NA		NA		NA		NA		A	0.5	A	1.3				
WB - NYS Route 366			A	1.8			A	1.8								
NB - Proposed Dwy			B	14.9			B	12.4								
NYS Route 366/ Game Farm Road																
EB - NYS Route 366	A	0.8			A	4.0			A	0.8	A	4.1	A	0.9	A	4.3
WB - NYS Route 366	A	4.8			A	5.4			A	5.3	A	5.4	A	5.3	A	5.6
NB - Game Farm Rd	E	40.7	B	10.4	F	60.1	B	13.6	F	117.6	B	15.0				
SB - Arboretum Center	B	13.9	A	0.0	B	15.0	A	0.0	D	25.4	A	0.0				

Notes:
I. $E B=$ Eastbound; $W B=$ Westbound; $N B=$ Northbound; $\mathrm{SB}=$ Southbound
2. $\quad C(I 8 . I)=$ Level of Service (Delay in seconds per vehicle)
3. All intersections are unsignalized.
4. NA = Approach not analyzed and/or does not exist under this condition.
5. Green shaded cells indicate low delays, yellow/orange shaded cells indicate moderate delays, red shaded cells indicate longer delays.

Based on observations and gap conditions during the study periods, it was determined that SimTraffic results are more representative of actual operation conditions. Notably, at NYS Route 366/Freese Road/Mt. Pleasant Road, for the northbound Mt. Pleasant Road approach between 7:30-8:00 AM, there were eight occasions where vehicles queued greater than three to four vehicles in length at any one time. On average, these queues cleared in approximately 1.6 minutes
(on average, 2.2 minutes between queuing conditions). The peak 15 -minute peak for northbound traffic occurred between 7:45-8:00 AM. Between 8:00-8:30 AM, there were five occasions where the condition occurred, with an approximate average duration of I.I minutes (on average, 4.9 minutes between queuing conditions). During the periods between the northbound queuing conditions, gaps in through traffic along NYS Route 366 were observed. Northbound traffic was also sporadic. Vehicles approaching the intersection along NYS Route 366 generally arrived in platoons.

NYS Route 366/Freese Road/Mt. Pleasant Road

All approaches are projected to operate at LOS "D" or better during all peak hours under all conditions. The LOS "D" for the northbound Mt. Pleasant Road approach during the AM peak hour is on the lower end of the delay spectrum for this LOS under existing and conditions, as the threshold between LOS "C" and " D " is 25.0 seconds of delay per vehicle. Under background conditions, the northbound approach changes from LOS "D" to "E". Between background and full build conditions, the southbound approach changes from LOS "C" to "E" during the PM peak hour. These conditions are characteristic of unsignalized minor side roads along moderately trafficked roads, such as NYS Route 366 . Traffic conditions will likely be better during the remaining hours of the day.

A preliminary Traffic Signal Warrant Investigation was performed using the available turning movement count data based on the capacity analysis conditions. A full Traffic Signal Warrant Investigation includes nine warrants, as per the Manual on Uniform Traffic Control Devices (2009), three of which are volume-related warrants: Eight-Hour, Four-Hour, and Peak Hour. This study reviewed the Four-Hour and Peak Hour warrants. The NYSDOT bases justification for installing traffic signals on these strict guidelines as there are pros and cons to installing this traffic control device. Based on this data, conditions for a traffic signal are not met under existing nor full build condition for speeds of less than 40 MPH .

No mitigation is warranted or recommended as a result of this project.

Proposed Access Driveway Locations/Mt. Pleasant Road/NYS Route 366

All approaches to the proposed access driveway locations are projected to operate at LOS "B" or better during both peak hours under all conditions. Based upon NYSDOT guidelines for evaluating the need for a left-turn treatment, no left-turn treatments are warranted at the proposed site driveway along NYS Route 366. No mitigation is warranted or recommended.

NYS Route 366/Game Farm Road/Arboretum Center

The northbound Game Farm Road approach during the AM peak hour operates at LOS "E". Between existing and background conditions, the LOS is projected to change from "E" to "F". These conditions are characteristic of unsignalized minor side roads along moderately trafficked roads, such as NYS Route 366. Traffic conditions will likely be better during the remaining hours of the day. With full development of the proposed project, delays are projected to increase.

A preliminary Traffic Signal Warrant Investigation was performed using the available turning movement count data based on the capacity analysis conditions. Based on this data, conditions for a traffic signal are partially met under existing and full build conditions for speeds above 40 MPH (two of the nine warrants). Based on NYSDOT data, 85th percentile speeds in the area of this intersection are above 40 MPH ; thus 70\% thresholds in Figure 4C-2 and Figure 4C-4 are used as a basis for analysis. Based on a preliminary review of available NYSDOT hourly traffic volume data along NYS Route 366 from 2017 and Game Farm Road from 2014, the Eight-Hour warrant is not likely to be met under existing nor full build conditions. It is important to note that based on this
hourly data, conditions will be satisfactory for most hours of the typical day, save for the AM peak hour, as evidenced by the projected capacity analysis results. The following graphic shows the hourly variation in northbound traffic along Game Farm Road, highlighting the comparison of AM peak hour traffic to the remaining hours of the day.

This intersection should be monitored as nearby approved development progresses. It is recommended that after full development of the proposed project, this intersection (along with the project site driveways) should be re-examined to evaluate actual traffic conditions and determine actual trip generation and distribution rates and patterns. More detailed studies, including delay, gap and crash analyses should be performed to fully assess if/when a potential traffic signal is justified.

Any future capacity improvements should be coordinated with the NYSDOT, Tompkins County, the Towns of Ithaca and Dryden, and project sponsors of future developments to determine if these improvements are necessary.

As stated, there is variability in the trip generation associated with the student housing program. Variables affecting trip generation can be campus parking policies, class schedules, shuttle service, and other demand management strategies (e.g., carpooling). These variables can have the net effect of reducing total site generated trips and projected impacts from the proposed project. For example, Cornell University notes that on-campus parking is "extremely limited" and off-campus students must purchase parking passes.

To note, a $\mathbf{I}-20 \%$ reduction in student-associated trip generation estimates as a result of demand management strategies (discussed later in this report) can reduce northbound AM peak hour projected delays at this intersection by up to 45 seconds.

A Traffic Gap Analysis was performed along NYS Route 366 at Freese Road/Mt. Pleasant Road and Game Farm Road to determine the availability of gaps for traffic to enter (left-turns) the through traffic stream along NYS Route 366. For unsignalized intersections such as these, gap availability can be used as a surrogate methodology for evaluating the ability of side road traffic to enter and exit the fronting traffic stream.

The availability of gaps within the traffic stream primarily determines the side road driver behavior and delay for both entering and exiting motorists. A gap study counts the actual gaps in existing traffic available for a vehicle to enter or exit the side road. The difference between the actual number of gaps and the projected demand for a particular traffic movement can then be calculated as a reserve or deficit capacity.

The 2016 HCM provides data relative to gap sizes that motorists find acceptable to execute the required maneuver. SRFA performed a Traffic Gap Analysis at the noted intersections along NYS Route 366 during the critical AM peak hour to evaluate existing and potential future operating conditions. Table VI indicates the acceptable gap duration, the actual number of gaps based on the duration, the projected traffic volume for the movement, and the resulting reserve (or deficit) capacity during the AM peak hour.

TABLE VI

PEAK HOUR GAP ANALYSIS RESULTS
ACTUAL

MOVEMENT	ACCEPTABLE GAP DURATION	ACTUAL EXISTING GAPS BASED ON COLLECTED DATA	EXISTING VOLUME	ACTUAL RESERVE CAPACITY
Left-turns out of Mt. Pleasant Road onto NYS Route 366	7.1 sec	202	48	154
Left-turns out of Game Farm Road onto NYS Route 366	7.1 sec	190	109	81

Based on the field observations and the gap study results, and existing traffic volumes, there are sufficient gaps during the AM peak to accommodate the existing left-turn movements exiting the minor side roads onto NYS Route 366.

There are currently 109 left-turns exiting Game Farm Road during the AM peak hour. The actual reserve capacity allows for 81 additional left-turns under existing conditions. Approved background projects are projected to add approximately 25 vehicles per hour (VPH) to the eastbound direction and six VPH to the eastbound direction. The proposed project is projected to add approximately 61 VPH to the eastbound direction and 19 VPH to the westbound direction. This is one additional vehicle every 45 seconds. These increases in traffic volumes may reduce the number, duration, and/or frequency in gaps. Therefore, it is recommended a future gap study be performed to evaluate actual traffic gaps and determine if/when appropriate capacity improvements are needed.

X. LEFT TURN TREATMENT WARRANT INVESTIGATION

Volume warrants for a left-turn treatment on NYS Route 366 at the proposed access drive was investigated using the TRB's NCHRP Report 279: Intersection Channelization Design Guide (1985). Provisions for left-turn lane facilities should be established where traffic volumes are high enough and safety considerations are sufficient to warrant the additional lane. This investigation analyzes warrants during the AM and PM peak hours.

Based upon the analysis, the combination of proposed traffic volumes turning left onto the proposed access drive from NYS Route 366 indicates a left-turn treatment is not warranted during the peak hours of study. All supporting calculations and charts are included in the Appendices.

XI. TRANSPORTATION DEMAND MANAGEMENT PLAN

TDM or Commute Trip Reduction (CTR) initiatives, if implemented strategically, can have a noticeable impact on reducing trips from a project. TDM is the application of strategies and policies to reduce Single Occupant Vehicle (SOV) travel demand, or to redistribute this demand in space or in time. By definition, TDM includes various strategies that produce a more efficient use of transportation resources and increase the efficiency of a transportation system. This in turn can lead to less traffic congestion, reduce the possibility that system upgrades or new facilities will be required, lower road maintenance costs and improve air quality.

TDM programs have many potential benefits. They can reduce the total number of vehicle miles traveled (VMT) by promoting alternatives to driving alone. Fewer vehicle miles traveled results in less ozone pollution. Employers can use TDM programs to reduce overhead costs, enhance productivity, and reduce employee turnover. TDM programs can also improve the use of public transit services, bikeways, and sidewalks by educating users about their travel options and coordinating trips between users with similar trip patterns. Implementing an effective TDM program may also reduce the required number of parking spaces for a project. Table VII summarizes some of the benefits that can be realized from an effective TDM program.

TABLE VII
 BENEFITS OF TDM PROGRAMS

BENEFIT	DESCRIPTION
Congestion Reduction	Reduces traffic congestion delays and associated costs.
Road \& Parking Savings	Reduces road and parking facility costs, as well as supply needed for parked vehicles. Helps consumers save money by reducing their need to own and operate motor vehicles.
Consumer Savings	Improved travel options, particularly for non-drivers.
Rransport Choice Safety	Reduced crash risk.
Environmental	
Protection	

Efficient Land Use	Supports strategic land use planning objectives, such as reduced sprawl, urban redevelopment and reduced habitat fragmentation.
Community Livability	Improved local environmental quality and community cohesion.
Economic Development	Supports a community's economic objectives, such as increased productivity, employment, wealth, property values and tax revenues.
Physical Fitness and	Improved public fitness and health due to more physical activity, usually through increased daily walking and cycling.
Health	

The following TDM strategies, and associated credit per established guidelines (City of Buffalo TDM Policy Guide), are considered to be feasible for the proposed project in Table VIII.

TABLE VIII
 TDM STRATEGIES

STRATEGY	DESCRIPTION	REDUCTION CREDIT
Promotion \& Education	Information highlighting non-SOV opportunities (transit, bikeshare, carshare, carpool, etc.) should be tailored to the project site and materials be made available online and in-person for new residents, employees, or tenants in highly visible areas of the development.	Up to 2\%
Bicycle Facilities and Services	Providing bicycle facilities and services can increase the attractiveness to bike to the project site. Such enhancements are secured parking, shower facilities and lockers, and a repair station	Parking: I trip per 5 additional spaces above requirement
		Repair: 1\%
Transit/Shuttle Facility	An enhanced transit/shuttle facility (e.g., shelter, seating, lighting, etc.) can increase the comfort, accessibility, and safety for riders. Providing convenient and steady service is benefit.	Up to 4\%
Carpool	Carpooling can reduce SOV trips. Information regarding the program should be up-to-date and highly accessible online and in-person.	Up to 2\%
Unbundled Parking	Parking sold or rented separately from building costs can reduce travel and parking demand. The project site is already implementing this program for the apartment residents.	Up to 10\%

The application of TDM strategies align with the goals and strategies outlined in the June 2008 Cornell University Transportation Impact Mitigation Strategies report.

When taken together and appropriately applied, the TDM strategies may result in a travel and parking demand reduction of up to $15-20 \%$. Given that this is student housing, shuttle service
credits may be higher based on university parking policies. As stated, these highlighted credits are based on the City of Buffalo and its inherent characteristics. In no way is this an attempt to correlate a dense urban environment to a suburban/rural setting. However, nearby transit access, ride-hailing companies (e.g., Uber, Lyft), and shuttle service for site residents are similar characteristics. A ridematching service is also recommended.

A monitoring plan can be established to measure the effectiveness of these, or other, strategies in reducing travel demand.

XII. CONCLUSIONS \& RECOMMENDATIONS

This study identifies and evaluates the potential traffic impacts that can be expected from the proposed Townhomes at Dryden project in the Town of Dryden, New York. The results of this study determine that the existing transportation network can adequately accommodate the projected traffic volumes and resulting impacts to study area intersections. The following sets forth the conclusions and recommendations based upon the results of the analyses:
I. The proposed project is expected to generate approximately 59 entering/I 10 exiting vehicle trips during the AM peak hour and 120 entering/96 exiting vehicle trips during the PM peak hour. Not all these driveway volumes are new, but instead a portion of the proposed volume is reduced considering internal and pass-by adjustments. Thus, the proposed project is expected to generate approximately 25 entering/70 exiting new vehicle trips during the AM peak hour and 91 entering/69 exiting new vehicle trips during the PM peak hour.
2. It is also recognized that there is variability in the trip generation associated with the student housing program. Variables affecting trip generation can be campus parking policies, class schedules, shuttle service, and other demand management strategies (e.g., carpooling). These variables can have the net effect of reducing total site generated trips.
3. Based upon the expected delays under full development, the following is recommended at NYS Route 366/Game Farm Road/Arboretum Center. Periodic snapshots of actual traffic operations at this intersection and proposed site driveways (to determine actual trip generation and distribution rates and patterns) are recommended as part of a Monitoring and Mitigation Plan to determine if/when the identified improvements are justified.
a. Based on a preliminary Traffic Signal Warrant Investigation using available turning movement count data, conditions for a traffic signal are partially met under existing and full build conditions. A full Traffic Signal Warrant Investigation includes nine warrants, as per the Manual on Uniform Traffic Control Devices (2009), three of which are volume-related warrants: Eight-Hour, Four-Hour, and Peak Hour. This study reviewed the Four-Hour and Peak Hour warrants. The New York State Department of Transportation (NYSDOT) bases justification for installing traffic signals on these strict guidelines as there are pros and cons to installing this traffic control device. This intersection should be monitored as nearby approved development progresses and future traffic volumes materialize.
b. It is important to note that based on available hourly data obtained by the NYSDOT, conditions will be satisfactory for most hours of the typical day, save for the AM peak hour, as evidenced by the projected capacity analysis results.
c. More detailed studies, including delay, gap and crash analyses should be performed to fully assess if/when a potential traffic signal is justified.
d. Any future capacity improvements should be coordinated with the New York State Department of Transportation, Tompkins County, the Towns of Ithaca and Dryden, and project sponsors of future developments to determine if these improvements are necessary.
e. To note, a $\mathbf{1 5}-20 \%$ reduction in student-associated trip generation estimates as a result of demand management strategies (discussed later in this report) can reduce northbound AM peak hour projected delays at this intersection by up to 45 seconds.
4. An existing Traffic Gap Analysis along NYS Route 366 at the intersections with Freese Road/Mt. Pleasant Road and Game Farm Road showed that there are sufficient gaps during the critical AM peak hour to accommodate the existing left-turn movements exiting the minor side roads onto NYS Route 366.
5. The proposed access drives shall be stop-controlled for their approaches to the adjacent roadways.
6. The results of the Left-Turn Treatment Warrant Investigation at the proposed access driveway along NYS Route 366 show that left-turn treatments are not warranted during the peak hours.
7. Transportation Demand Management (TDM) strategies are recommended to reduce travel and parking demands.
a. The application of TDM strategies align with the goals and strategies outlined in the June 2008 Cornell University Transportation Impact Mitigation Strategies report.
b. When taken together and appropriately applied, TDM strategies may result in a travel and parking demand reduction of up to $15-20 \%$.
c. A monitoring plan can be established to measure the effectiveness of these, or other, strategies in reducing travel demand.
8. The proposed project will result in traffic impacts to the study area intersections that can be appropriately accommodated via TDM strategies and potentially mutually coordinated improvements, as outlined in this study.

XIII. FIGURES

Figures I through 8 are included on the following pages.

APPENDICES

A1

Collected Traffic Volume Data

Miscellaneous Traffic Data and Calculations

360012

Tompkins
1046760
 こと
ㄷㅇ온 YO पצ
：NIG
$: \#$ NOI
：NMOI KATCH ID：DOT－R03C43bTST5195HPMS SAMPL PROCESSED BY：ORG CODE：DOT INITIALS：SJK
FROM：ITHACA TL
REC．SERIAL \＃：CF92
PLACEMENT： 164 yds E of Game Farm Rd．
＠REF MARKER：
ADDL DATA：Class Speed
NHS：no
TO：FOREST HOME DR
TO：FUNC．CLASS： 16

30
43
FACTOR GROUP：
ROAD NAME：

10	11	12	1	2	3	4
TO						
11	12	1	2	3	4	5

TO	TO
6	7

ค○

01
01
6
으으둑
TO
10 －으
F° －
$\begin{array}{lrrrrrr}\text { TO } & \text { TO } \\ 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}$

OL	6
O	
6	O

$\stackrel{6}{\circ}$
$\begin{array}{ccccccccc}c \\ \text { COUNT TAKEN BY：ORG CODE：TST } \\ & \text { 12 } & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ & \text { TO } \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
DATE OF COUNT： $10 / 23 / 2017$
NOTES LANE 1：EB travel lane
COUNT TAKEN BY：ORG CODE：TST INITIALS：HJD $\begin{array}{lr}\text { ROUTE \＃：} & \text { NY } 366 \\ \text { DIRECTION：} & \text { Eastbound }\end{array}$

STATE DIR
WK OF YR．

文の Σ ト

$\stackrel{\odot}{\bullet} \bullet$

둥

No
がず
毋ロロ
Nㅜㅇ웅

耳욛옫
ผ్ల్స
ず゚N
OZG
LLG
$08 t$
융휴
๗్NొN్ల్ల
ㅅNN్N
N～융
891
991
291

운
StL
LZ

웅응
두N
우の \varnothing
$F \infty \infty$
요국
N $\sim \stackrel{\infty}{\sim}$
ポー～

STATION： 360012

New York State Department of Transportation Traffic Count Hourly Report
Page 2 of 2 Pa

 DAILY HIGNT HOUR
－ O ～ yy
：NIG
\＃NOIר
NMOI KATCH ID：DOT－R03C43bTST5193HPMS SAMPL COUNT TYPE：AXLE PAIRS
PROCESSED BY：ORG CODE：DOT INITIALS：SJK
FROM：ITHACA TL
FREC．SERIAL \＃：CF92
PLACEMENT： 164 yds E of Game Farm Rd．
＠REF MARKER：
ADDL DATA：Class Speed
NHS：no
TO：FOREST HOME DR
TO：FUNC．CLASS： 16

30
30
43
ROAD NAME：
WK OF YR：

DATE OF COUNT： $10 / 23 / 2017$
NOTES LANE 1：WB travel lane $\begin{array}{ll}\text { ROUTE \＃：} & \text { NY } \mathbf{3 6 6} \\ \text { DIRECTION：} & \text { Westbound }\end{array}$ $\begin{array}{ll}\text { ROUTE \＃：} & \text { NY } 366 \\ \text { DIRECTION：} & \text { Westbound }\end{array}$

STATE DIR CODE： 7
Nㅏ－

ベース
웅웅ㅇㅇ
악육 꾹
$\stackrel{N}{N}{ }_{N}^{\circ}{ }^{\circ} \stackrel{N}{N}$
あ $\underset{\sim}{\sim} \stackrel{N}{N}$
으N․․ㅇ
すOON
®®®®
우운
수Nํ
N등
今్ల్
109
829

్N우
®응웅
ますin

$\sim \infty$

ำ ำ ก

02
$2 L$
21

SIMATED

AADT 3717

COUNTY：
DATE OF COUNT：

Axle Adj．
Factor
1.000

∞
∞
$\stackrel{\infty}{\circ}$

1.078

AVERAGE WEEKDAY
of day

15\％

590
590
WEEKDAYS WEEKDAY
$\frac{\text { Hours }}{70}$ \qquad

17

\pm

\div

New York State Department of Transportation

	DAYS Counted 3	HOURSCounted71		WEEKDAYS Counted 3			WEEKDAYHours71	RoadwayHigh Hour \% of day			AVERAGE WEEKDAY				$\begin{gathered} \hline \hline \text { ESTIMATED } \\ \text { AADT } \end{gathered}$					
						10.2		145	12.3	149	13.1	2180	1110	1070						
	FACTOR	Seasonal1.06					$\begin{gathered} \text { Mon } \\ 1.00 \end{gathered}$	$\begin{aligned} & \text { Tue } \\ & 1.00 \end{aligned}$	$\begin{aligned} & \text { Wed } \\ & 1.00 \end{aligned}$	$\begin{aligned} & \text { Thu } \\ & 1.00 \end{aligned}$	Fri	Sat	$\begin{aligned} & \text { Axl } \\ & 1.00 \end{aligned}$							
	Month																			
	9																			
			ROUT				OAD:	GAME FAR				Steve	ENSON RD		то:		NYS RT 366			
Created on:	: 01/23/20	15 10:20	Statio	3	368220			cem	ENT: 200 YD	DS N OF ST	Evenson rd	Region	N-COUNTY	3-TOMPKINS			Page 3 of 3			

Project Information	
Project Name:	Townhomes at Dryden
No:	38053
Date:	$8 / 28 / 2018$
City:	Dryden
State/Province:	New York
Zip/Postal Code:	
Country:	
Client Name:	Trinitas Ventures
Analyst's Name:	David Kruse, AICP, PTP
Edition:	ITE-TGM 1Oth Edition, SRFA

Land Use	Size	Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.		Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.	
		Entry	Exit	Entry	Exit
Student Housing - Local Rates (see calculations)	602 Beds	16	68	93	69
Internal (see NCHRP 684 spreadsheet model)		-1	-10	-7	-3
Pass-by		0	0	0	0
Non-pass-by		15	58	86	66
820-Shopping Center	1.311000 Sq. Ft. GFA	2	2	12	13
Internal (see NCHRP 684 spreadsheet model)		0	0	-7	-7
Pass-by (0\% AM; 20\% PM)		0	0	-1	-1
Non-pass-by		2	2	4	5
936 - Coffee/Donut Shop without Drive-Through Window	. 81000 Sq. Ft. GFA	41	40	15	14
Internal (see NCHRP 684 spreadsheet model)		-8	-1	-5	-8
Pass-by (70\% AM; 50\% PM)		-23	-27	-5	-3
Non-pass-by		10	12	5	3
Total		59	110	120	96
Total Internal		-9	-11	-19	-18
Total Pass-by		-23	-27	-5	-3
Total Non-pass-by		25	70	91	69

Trip Generation Rates

AM Enter 16
AM Exit 68
PM Enter 93
PM Exit 69

College Circle 324 beds		
		Rate
AM Enter	8	0.02
AM Exit	37	0.11
PM Enter	92	0.28
PM Exit	54	0.17

Average Rates

495 beds

Average Rates 495 beds		
		Rate
AM Enter	13	0.03
AM Exit	55	0.11
PM Enter	75	0.15
PM Exit	56	0.11

Proposed Project (Local Rates) 602 beds

Suny Brockport
340 beds

		Rate
AM Enter	10	0.03
AM Exit	38	0.11
PM Enter	50	0.15
PM Exit	35	0.10

Proposed Townhomes at Dryden
Town of Dryden, NY

ITE Rates

- beds

		Rate	Dir. Dist.	Avg. Rate
AM Enter	-	0.04	28%	0.16
AM Exit	-	0.12	72%	
PM Enter	-	0.13	50%	0.25
PM Exit	-	0.13	50%	

Proposed Project (ITE) 602 beds

AM Enter 15
AM Exit 69
PM Enter 75
PM Exit 75

University Village
820 beds
Rate
AM Enter $21 \quad 0.03$
AM Exit $91 \quad 0.11$

PM Enter	84	0.10

$\begin{array}{lll}\text { PM Exit } & 79 & 0.10\end{array}$

NCHRP 8-51 Internal Trip Capture Estimation Tool				
Project Name:	Townomes at Dryden		Organization:	
Project Location:	NYS Route 366/Mt. Pleasant Road		SRF Associates, D.P.C.	
Scenario Description:	Full Build	Performed By:	David Kruse, AICP, PTP	
Analysis Year:	2020	Date:	29-Aug	
Analysis Period:	AM Street Peak Hour	Dhecked By:		
		Date:		

Table 1-A: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)

Table 1-A: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)						
Land Use	Development Data (For Information Only)			Estimated Vehicle-Trips		
	ITE LUCs ${ }^{1}$	Quantity	Units	Total	Entering	Exiting
Office				0		
Retail	820	1,312	SF	4	2	2
Restaurant	936	800	SF	81	41	40
Cinema/Entertainment				0		
Residential		602	Beds	80	14	66
Hotel				0		
All Other Land Uses ${ }^{2}$				0		
Total				165	57	108

Table 2-A: Mode Split and Vehicle Occupancy Estimates						
Land Use	Entering Trips			Exiting Trips		
	Veh. Occ.	\% Transit	\% Non-Motorized	Veh. Occ.	\% Transit	\% Non-Motorized
Office						
Retail	1.17	0\%	0\%	1.16	0\%	0\%
Restaurant	1.40	0\%	0\%	1.40	0\%	0\%
Cinema/Entertainment						
Residential	1.13	1\%	3\%	1.09	0\%	2\%
Hotel						
All Other Land Uses ${ }^{2}$						

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)								
Origin (From)		Destination (To)						
	Office	Retail	Restaurant	Cinema/Entertainment	Residential			
Office								
Retail								
Restaurant								
Cinema/Entertainment								
Residential								
Hotel								

Table 4-A: Internal Person-Trip Origin-Destination Matrix*							
Origin (From)	Destination (To)						
	Office	Retail	Restaurant	Cinema/Entertainment	Residential		
Office		0	0	0	0	0	
Retail	0		0	0	0		
Restaurant	0	0		0	0		
Cinema/Entertainment	0	0	0		0		
Residential	0	0	11	0	0	0	
Hotel	0	0	0	0	0		

Table 5-A: Computations Summary				Table 6-A: Internal Trip Capture Percentages by Land Use		
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips
All Person-Trips	205	75	130	Office	N/A	N/A
Internal Capture Percentage	12\%	16\%	9\%	Retail	0\%	0\%
				Restaurant	19\%	2\%
External Vehicle-Trips ${ }^{3}$	144	48	96	Cinema/Entertainment	N/A	N/A
External Transit-Trips ${ }^{4}$	0	0	0	Residential	6\%	15\%
External Non-Motorized Trips ${ }^{4}$	1	0	1	Hotel	N/A	N/A

${ }^{1}$ Land Use Codes (LUCs) from Trip Generation Informational Report, published by the Institute of Transportation Engineers.
${ }^{2}$ Total estimate for all other land uses at mixed-use development site-not subject to internal trip capture computations in this estimator
${ }^{3}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A
${ }^{4}$ Person-Trips
*Indicates computation that has been rounded to the nearest whole number.

Project Name:	Townhomes at Dryden					
Analysis Period:	AM Street Peak Hour					
Table 7-A: Conversion of Vehicle-Trip Ends to Person-Trip Ends						
Land Use	Table 7-A (D): Entering Trips			Table 7-A (O): Exiting Trips		
	Veh. Occ.	Vehicle-Trips	Person-Trips*	Veh. Occ.	Vehicle-Trips	Person-Trips*
Office	1.00	0	0	1.00	0	0
Retail	1.17	2	2	1.16	2	2
Restaurant	1.40	41	57	1.40	40	56
Cinema/Entertainment	1.00	0	0	1.00	0	0
Residential	1.13	14	16	1.09	66	72
Hotel	1.00	0	0	1.00	0	0

Table 8-A (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		0	0	0	0	0
Retail	1		0	0	0	0
Restaurant	17	8		0	2	2
Cinema/Entertainment	0	0	0		0	0
Residential	1	1	14	0		0
Hotel	0	0	0	0	0	

Table 8-A (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)							
Origin (From)	Destination (To)						
	Office	Retail	Restaurant	Cinema/Entertainment	Residential		
Office		1	13	0	0		
Retail	0		29	0	0		
Restaurant	0	0		0	0		
Cinema/Entertainment	0	0	0		0		
Residential	0	0	11	0	0		
Hotel	0	0	3	0	0		

Table 9-A (D): Internal and External Trips Summary (Entering Trips)						
Destination Land Use	Person-Trip Estimates			External Trips by Mode*		
	Internal	External	Total	Vehicles ${ }^{1}$	Transit ${ }^{2}$	Non-Motorized ${ }^{2}$
Office	0	0	0	0	0	0
Retail	0	2	2	2	0	0
Restaurant	11	46	57	33	0	0
Cinema/Entertainment	0	0	0	0	0	0
Residential	1	15	16	13	0	0
Hotel	0	0	0	0	0	0
All Other Land Uses ${ }^{3}$	0	0	0	0	0	0

Table 9-A (0): Internal and External Trips Summary (Exiting Trips)						
Origin Land Use	Person-Trip Estimates			External Trips by Mode*		
	Internal	External	Total	Vehicles ${ }^{1}$	Transit ${ }^{2}$	Non-Motorized ${ }^{2}$
Office	0	0	0	0	0	0
Retail	0	2	2	2	0	0
Restaurant	1	55	56	39	0	0
Cinema/Entertainment	0	0	0	0	0	0
Residential	11	61	72	55	0	1
Hotel	0	0	0	0	0	0
All Other Land Uses ${ }^{3}$	0	0	0	0	0	0

${ }^{1}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

${ }^{2}$ Person-Trips

${ }^{3}$ Total estimate for all other land uses at mixed-use development site-not subject to internal trip capture computations in this estimator
*Indicates computation that has been rounded to the nearest whole number.

NCHRP 8-51 Internal Trip Capture Estimation Tool				
Project Name:	Townomes at Dryden		Organization:	
Project Location:	NYS Route 366/Mt. Pleasant Road		SRF Associates, D.P.C.	
Scenario Description:	Full Build	Performed By:	David Kruse, AICP, PTP	
Analysis Year:	2020	Date:	29-Aug	
Analysis Period:	PM Street Peak Hour	Date:		

Table 1-P: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)

Table 1-P: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)						
Land Use	Development Data (For Information Only)			Estimated Vehicle-Trips		
	ITE LUCs ${ }^{1}$	Quantity	Units	Total	Entering	Exiting
Office				0		
Retail	820	1,312	SF	25	12	13
Restaurant	936	800	SF	29	15	14
Cinema/Entertainment				0		
Residential		602	Beds	157	91	66
Hotel				0		
All Other Land Uses ${ }^{2}$				0		
Total				211	118	93

Table 2-P: Mode Split and Vehicle Occupancy Estimates						
Land Use	Entering Trips			Exiting Trips		
	Veh. Occ.	\% Transit	\% Non-Motorized	Veh. Occ.	\% Transit	\% Non-Motorized
Office						
Retail	1.21	0\%	0\%	1.18	0\%	0\%
Restaurant	1.33	0\%	0\%	1.34	0\%	0\%
Cinema/Entertainment						
Residential	1.15	1\%	3\%	1.21	0\%	4\%
Hotel						
All Other Land Uses ${ }^{2}$						

Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)

Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office						
Retail					500	
Restaurant					500	
Cinema/Entertainment						
Residential		500	500			
Hotel						

Table 4-P: Internal Person-Trip Origin-Destination Matrix*						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		0	0	0	0	0
Retail	0		4	0	4	0
Restaurant	0	8		0	3	0
Cinema/Entertainment	0	0	0		0	0
Residential	0	1	3	0		0
Hotel	0	0	0	0	0	

Table 5-P: Computations Summary				Table 6-P: Internal Trip Capture Percentages by Land Use		
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips
All Person-Trips	254	140	114	Office	N/A	N/A
Internal Capture Percentage	18\%	16\%	20\%	Retail	60\%	53\%
				Restaurant	35\%	58\%
External Vehicle-Trips ${ }^{3}$	169	97	72	Cinema/Entertainment	N/A	N/A
External Transit-Trips ${ }^{4}$	1	1	0	Residential	7\%	5\%
External Non-Motorized Trips ${ }^{4}$	6	3	3	Hotel	N/A	N/A

${ }^{1}$ Land Use Codes (LUCs) from Trip Generation Informational Report, published by the Institute of Transportation Engineers.
${ }^{2}$ Total estimate for all other land uses at mixed-use development site-not subject to internal trip capture computations in this estimator
${ }^{3}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P
${ }^{4}$ Person-Trips
*Indicates computation that has been rounded to the nearest whole number.
Estimation Tool Developed by the Texas Transportation Institute

Project Name:	Townhomes at Dryden					
Analysis Period:	PM Street Peak Hour					
Table 7-P: Conversion of Vehicle-Trip Ends to Person-Trip Ends						
Land Use	Table 7-P (D): Entering Trips			Table 7-P (0): Exiting Trips		
	Veh. Occ.	Vehicle-Trips	Person-Trips*	Veh. Occ.	Vehicle-Trips	Person-Trips*
Office	1.00	0	0	1.00	0	0
Retail	1.21	12	15	1.18	13	15
Restaurant	1.33	15	20	1.34	14	19
Cinema/Entertainment	1.00	0	0	1.00	0	0
Residential	1.15	91	105	1.21	66	80
Hotel	1.00	0	0	1.00	0	0

Table 8-P (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		0	0	0	0	0
Retail	0		4	1	4	1
Restaurant	1	8		2	3	1
Cinema/Entertainment	0	0	0		0	0
Residential	3	31	15	0		2
Hotel	0	0	0	0	0	

Table 8-P (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		1	0	0	4	0
Retail	0		6	0	48	0
Restaurant	0	8		0	17	0
Cinema/Entertainment	0	1	1		4	0
Residential	0	1	3	0		0
Hotel	0	0	1	0	0	

Table 9-P (D): Internal and External Trips Summary (Entering Trips)						
Destination Land Use	Person-Trip Estimates			External Trips by Mode*		
	Internal	External	Total	Vehicles ${ }^{1}$	Transit ${ }^{2}$	Non-Motorized ${ }^{2}$
Office	0	0	0	0	0	0
Retail	9	6	15	5	0	0
Restaurant	7	13	20	10	0	0
Cinema/Entertainment	0	0	0	0	0	0
Residential	7	98	105	82	1	3
Hotel	0	0	0	0	0	0
All Other Land Uses ${ }^{3}$	0	0	0	0	0	0

Table 9-P (O): Internal and External Trips Summary (Exiting Trips)						
Origin Land Use	Person-Trip Estimates			External Trips by Mode*		
	Internal	External	Total	Vehicles ${ }^{1}$	Transit ${ }^{2}$	Non-Motorized ${ }^{2}$
Office	0	0	0	0	0	0
Retail	8	7	15	6	0	0
Restaurant	11	8	19	6	0	0
Cinema/Entertainment	0	0	0	0	0	0
Residential	4	76	80	60	0	3
Hotel	0	0	0	0	0	0
All Other Land Uses ${ }^{3}$	0	0	0	0	0	0

${ }^{1}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P

[^0]| Land Use Pairs | | Weekday | |
| :---: | :---: | :---: | :---: |
| | | AM Peak Hour | PM Peak Hour |
| From OFFICE | To Office | 0.0\% | 0.0\% |
| | To Retail | 28.0\% | 20.0\% |
| | To Restaurant | 63.0\% | 4.0\% |
| | To Cinema/Entertainment | 0.0\% | 0.0\% |
| | To Residential | 1.0\% | 2.0\% |
| | To Hotel | 0.0\% | 0.0\% |
| From RETAIL | To Office | 29.0\% | 2.0\% |
| | To Retail | 0.0\% | 0.0\% |
| | To Restaurant | 13.0\% | 29.0\% |
| | To Cinema/Entertainment | 0.0\% | 4.0\% |
| | To Residential | 14.0\% | 26.0\% |
| | To Hotel | 0.0\% | 5.0\% |
| From RESTAURANT | To Office | 31.0\% | 3.0\% |
| | To Retail | 14.0\% | 41.0\% |
| | To Restaurant | 0.0\% | 0.0\% |
| | To Cinema/Entertainment | 0.0\% | 8.0\% |
| | To Residential | 4.0\% | 18.0\% |
| | To Hotel | 3.0\% | 7.0\% |
| From CINEMA/ENTERTAINMENT | To Office | 0.0\% | 2.0\% |
| | To Retail | 0.0\% | 21.0\% |
| | To Restaurant | 0.0\% | 31.0\% |
| | To Cinema/Entertainment | 0.0\% | 0.0\% |
| | To Residential | 0.0\% | 8.0\% |
| | To Hotel | 0.0\% | 2.0\% |
| From RESIDENTIAL | To Office | 2.0\% | 4.0\% |
| | To Retail | 1.0\% | 38.2\% |
| | To Restaurant | 20.0\% | 19.1\% |
| | To Cinema/Entertainment | 0.0\% | 0.0\% |
| | To Residential | 0.0\% | 0.0\% |
| | To Hotel | 0.0\% | 3.0\% |
| From HOTEL | To Office | 75.0\% | 0.0\% |
| | To Retail | 14.0\% | 16.0\% |
| | To Restaurant | 9.0\% | 68.0\% |
| | To Cinema/Entertainment | 0.0\% | 0.0\% |
| | To Residential | 0.0\% | 2.0\% |
| | To Hotel | 0.0\% | 0.0\% |

Land Use Pairs		Weekday	
		AM Peak Hour	PM Peak Hour
To OFFICE	From Office	0.0\%	0.0\%
	From Retail	4.0\%	31.0\%
	From Restaurant	14.0\%	30.0\%
	From Cinema/Entertainment	0.0\%	6.0\%
	From Residential	3.0\%	57.0\%
	From Hotel	3.0\%	0.0\%
To RETAIL	From Office	32.0\%	8.0\%
	From Retail	0.0\%	0.0\%
	From Restaurant	8.0\%	50.0\%
	From Cinema/Entertainment	0.0\%	4.0\%
	From Residential	17.0\%	9.1\%
	From Hotel	4.0\%	2.0\%
To RESTAURANT	From Office	23.0\%	2.0\%
	From Retail	50.0\%	29.0\%
	From Restaurant	0.0\%	0.0\%
	From Cinema/Entertainment	0.0\%	3.0\%
	From Residential	20.0\%	12.7\%
	From Hotel	6.0\%	5.0\%
To CINEMA/ENTERTAINMENT	From Office	0.0\%	1.0\%
	From Retail	0.0\%	26.0\%
	From Restaurant	0.0\%	32.0\%
	From Cinema/Entertainment	0.0\%	0.0\%
	From Residential	0.0\%	0.0\%
	From Hotel	0.0\%	0.0\%
To RESIDENTIAL	From Office	0.0\%	4.0\%
	From Retail	2.0\%	46.0\%
	From Restaurant	5.0\%	16.0\%
	From Cinema/Entertainment	0.0\%	4.0\%
	From Residential	0.0\%	0.0\%
	From Hotel	0.0\%	0.0\%
To HOTEL	From Office	0.0\%	0.0\%
	From Retail	0.0\%	17.0\%
	From Restaurant	4.0\%	71.0\%
	From Cinema/Entertainment	0.0\%	1.0\%
	From Residential	0.0\%	12.0\%
	From Hotel	0.0\%	0.0\%

PROPOSED TOWNHOMES AT DRYDEN
TOWN OF DRYDEN, NY
AM PEAK

PROPOSED TOWNHOMES AT DRYDEN
PM PEAK

	ス \％¢	$\stackrel{8}{8}+$	$\cdots 8$		テ		F	\cong	ก ํㅡㄹ		\％	－		ํ \％		\％\％\％		品完		咢呂
	二の	＊		スッ	むの		－	\bigcirc	No		－	\cdots		の	q	9\％		\％		־
																\because				
				－－	－				－									0		
	－	－	－				－				－			－		∞			－	\sim
				\％ัํํ ำ	๕ํํ				๕ํ						\％\％\％			遃		
	\％	ะั	ถัํ				\％				๕ั			\％\％		\％			\％	迢
				\div										－－m		$\cdots+4$		－		
				－－0	－				－						\sim			～0		
	－	－	－				－				－			\sim		∞			－	∞
				\％ั่ ัํ	\％\％				๕ํํ						骨 \％			\％้ํํํ		
	\％	ะั	ถํ	\％			ถั				๕ั			$\stackrel{\text { \％}}{\circ}$		\％			\％ัํ	发
			\cdots	¢			\checkmark	\because	\bigcirc			\cdots		＋	2 8	g		\％		
	－の	$\cdots \sim$		ส	さの				\cdots					$\stackrel{-}{-}$		む～				\％
				ชำ			\％ํํ	๕ั	\％			$\%$		๕	\％\％\％\％	\％		\％\％		
	\％ั̊ํํํ	※ํํํ		\％	\％ั®				\％ั					ลู้ํ		\％ั\％\％\％				䟠
		－\％	～¢ ¢ ¢ ¢		$\stackrel{\square}{\square}$		¢		\％		¢			\％		\％		¢9\％	F \pm	授㗊
	－	$=0 \text {. }$	$0 \text { - of }$	$\bigcirc \bigcirc$	－		－		－		－			\because		$\stackrel{\square}{\square}$		$\pm-$		$\stackrel{\sim}{\sim}$
		－			－				－					\cdots				\checkmark		
	\cdots		－	\cdots			－				－					の			－	∞
					๙้				๕ั					\％̌\％				\％ٌ\％		
	）	ช	ะั	遃			๕ั				๕ั					\％\％\％			\because	๕ั
				No	－				－					\sim				$\bullet 0$		
	－	∞	－				－				－					\checkmark			－	$=$
				\％ั玉ำ	ผ้				ะํ					๕๐				¢ิ้ํํ		
	\％	๕．	ผํ				๕ั				๕้					\％			$\%$	\％
		－mo			－				－					∞				mo		
	－		－	\cdots			－				－					\cdots			－	\checkmark
					ะํ				๙้					䟢				\％\％\％\％		
\|ros	－		ะั	\％̊ํํํ			๕ํ				๙้					\％\％			\％	๕ั
	ますか	－	－\％\％\％	的咢品	$\stackrel{\square}{\square}$		\％		$\stackrel{\square}{\square}$		๕			\％		免		¢¢\％	$8 \pm$	
	ま \％¢	－へ	－ 9%		$\stackrel{\otimes}{\square}$		®		$\stackrel{\infty}{\square}$		ฐ			$\stackrel{\text { }}{ }$		\％		ミ．	\％	\％
	\％\％¢	－	－ヶッ		\because		־		\because		$\bar{\square}$			亏		\％		\％¢¢	－	\％
					\qquad	\qquad				\square										¢
					\sim				∞								${ }^{5}$			

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-2. Warrant 2, Four-Hour Vehicular Volume (70\% Factor)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower
threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-1. Warrant 2, Four-Hour Vehicular Volume

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-2. Warrant 2, Four-Hour Vehicular Volume (70\% Factor)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower
threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.
Guideline for determining left-turn Lane at a two-way stop-controlled intersection

Guideline for determining left-turn Lane at a two-way stop-controlled intersection
TWO LANE ROADWAY

[^1]Proposed Townhomes at Dryden, Town of Dryden, NY

AM Peak Hour \# of two-way gaps (in seconds) between:

7.1	10.6	14.1	17.6	21.1	24.6	28.1	Or greater	Left Turn Capacity
43								43
	12							24
		16						48
			4					16
				2				10
					0			0
						7		49
								190

Mt. Pleasant Road - Left-out (onto NYS Route 366)

Proposed Townhomes at Dryden, Town of Dryden, NY

AM Peak Hour \# of two-way gaps (in seconds) between:

7.1	10.6	14.1	17.6	21.1	24.6	28.1	or greater	Left Turn Capacity
32								32
	26							52
		12						36
			5					20
				3				15
					2			12
						5		35
								202

A3

Level of Service: Criteria and Definitions

Level of Service Criteria

Highway Capacity Manual 2016

SIGNALIZED INTERSECTIONS

Level of Service is a qualitative measure describing operational conditions within a traffic stream, based on service measures such as speed and travel time, freedom to maneuver, traffic interruptions, comfort, and convenience. Level of Service for signalized intersections is defined in terms of delay specifically, average total delay per vehicle for a 15 minute analysis period. The ranges are as follows:

Level of Service	Control Delay per vehicle (seconds)
A	<10
B	$10-20$
C	$20-35$
D	$35-55$
E	$55-80$
F	>80

UNSIGNALIZED INTERSECTIONS

Level of Service for unsignalized intersections is also defined in terms of delay. However, the delay criteria are different from a signalized intersection. The primary reason for this is driver expectation that a signalized intersection is designed to carry higher volumes than an unsignalized intersection. The total delay threshold for any given Level of Service is less for an unsignalized intersection than for a signalized intersection. The ranges are as follows:

Level of Service	Control Delay per vehicle (seconds)
A	<10
B	$10-15$
C	$15-25$
D	$25-35$
E	$35-50$
F	>50

A4

Level of Service Calculations: Existing Conditions

Queuing and Blocking Report
2018 Existing Base Conditions - AM Peak Hour
2018 Existing Base Conditions - AM Peak Hour 08282018
Intersection: 1: Mt. Pleasant Road/Freese Road \& NYS Route 366 (Dryden Road)
Movement $E B$ WB NB SB

 | Average Queue (tt) | 18 | 1 | 80 | 43 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| psth Queve (tt) | 56 | 5 | 151 | 80 | Link Qivistancee (ti)

 \square

 Sint Queve (t)
Upstream Bik Time (\%)
Queuing Penaly (ver) storage Benne (9) Network Summary Nemork wide Queuing Penalty: 0

Proposed Tonnhomes at Dryden
SRF Associates, D.P.C.
SimTraffic Report
Page 2

Queuing and Blocking Report
2018 Existing Base Conditions - PM Peak Hour o8282018
Intersection: 1: Mt. Pleasant Road/Freese Road \& NYS Route 366 (Dryden Road)
Movement $E B$ WB NB SB

Naven Queve (t)	16	1	43	65
Average Quever	(t)	58	10	79
95t Queve (t)	126			
Link Distance (t)	1110	725	599	659

 Nemork wide Queuing Penaly: 0

SimTraffic Performance Report 2018 Existing Base Conditions - PM Peak Hour $08 / 282018$ 1: Mt. Pleasant Road/Freese Road \& NYS Route 366 (Dryden Road) Performance by approach \begin{tabular}{llllll}
Approach \& EB \& WB \& NB \& SB \& Al

\hline Deried Deday (hr) \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0

\hline Denied Dedveh (s) \& 0.0 \& 0.2 \& 0.1 \& 0.2 \& 0.1 \&

\hline
\end{tabular} Denied DdiNeh (s)

Total Delay $(h r)$
Total Delineh (s)

5: Game Farm Road/Arboretum Center \& NYS Route 366 (Dryden Road) Performance by approach \begin{tabular}{lllll}
\& EB \& WB \& NB \& Al

\hline Approach \& 0.1 \& 0.0 \& 0.0 \& 0.1

Denied Dday (hr) \& 0.1

Denied Dedveh (s) \& 0.7 \& 0.0 \& 0.2 \& 0.5

Total Delay (hr) \& 0.8 \& 0.4 \& 0.3 \& 1.6

Total Delveh (s) \& 4.0 \& 5.4 \& 10.4 \& 5.0

Stop Delay (rr) \& 0.0 \& 0.2 \& 0.3 \& 0.5

\hline

Total Network Performance \&

\hline \&

\hline Denied Deday (hr) \& 0.2

Denied DeAveh (s) \& 0.5

Total Deay (hr) \& 5.0

Total Delveh (s) \& 13.1

Stop Delay $(h r)$ \& 1.7

Stop Deliveh (s) \& 4.4

\hline

\hline Proposed Townhomes at Dryden \& SimTraffic Report

SRF Associates, D.P.C. \& Page 1
\end{tabular}

A5

Level of Service Calc ulations: Background Conditions

Queuing and Blocking Report
2020 Background Conditions - AM Peak Hour 08282018
Intersection: 1: Mt. Pleasant Road/Freese Road \& NYS Route 366 (Dryden Road)
 Storage Bay
Storage Bik Time (\%)
Queuing Penalty (veh)
Intersection: 5: Game Farm Road/Arboretum Center \& NYS Route 366 (Dryden Road)

$\frac{\text { Network Summary }}{\text { Network wide Queuing Penalty: } 0}$

SimTraffic Performance Report \begin{tabular}{ll}
Sim

2020 Background Conditions - AM Peak Hour \& $08 / 28 / 2018$

\hline

 1: Mt. Pleasant Road/Freese Road \& NYS Route 366 (Dryden Road) Performance by approach Approach \quad EB WB NB SB All

Apprach \& EB \& WB \& NB \& SB \& Al

\hline Denied Delay (hr) \& 0.0 \& 0.1 \& 0.0 \& 0.0 \& 0.2
\end{tabular} Denied Delveh (s)

Total Delay (hr) Total Del/ veh (s)
Stop Delay (hr)

5: Game Farm Road/Arboretum Center \& NYS Route 366 (Dryden Road) Performance by approach Approach \quad EB WB NB SB All $\begin{array}{llllll}\text { Denied Delay (hr) } & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ \text { Denied Delveh }(\mathrm{s}) & 0.2 & 0.1 & 0.2 & 0.1 & 0.1\end{array}$ \begin{tabular}{llllll}
Total Delay (hr) \& 0.0 \& 1.3 \& 3.3 \& 0.0 \& 4.7

Total DelNeh (s) \& 0.8 \& 5.3 \& 60.1 \& 15.0 \& 13.4

\hline

Total Del $/$ Neh (\mathbf{s}) \& 0.8 \& 5.3 \& 60.1 \& 15.0 \& 13.4

Stop Delay (hr) \& 0.0 \& 0.0 \& 3.2 \& 0.0 \& 3.2

\hline
\end{tabular} $\begin{array}{llllll}\text { Stop Delay }(\mathrm{hr}) & 0.0 & 0.0 & 3.2 & 0.0 & 3.2 \\ \text { Stop Del/ } \mathrm{eh}(\mathrm{s}) & 0.0 & 0.1 & 57.4 & 15.3 & 9.1\end{array}$ Total Network Performance Denied Delay (hr)

Queuing and Blocking Report
2020 Background Conditions - PM Peak Hour 08282018
Intersection: 1: Mt. Pleasant Road/Freese Road \& NYS Route 366 (Dryden Road)
 Storage Bay Dis (\%)
Storage Blik Tme (\%)
Queuting Penaly (veh)
Intersection: 5: Game Farm Road/Arboretum Center \& NYS Route 366 (Dryden Road)

$\frac{\text { Network Summary }}{\text { Nemork wide Queuing Penaly: } 0}$
$\begin{array}{lr}\text { Proposed Townhomes at Dryden } & \text { SimTraffic Report } \\ \text { SRF Associates, D.P.C. } & \text { Page 2 }\end{array}$
SimTraffic Performance Report
2020 Background Conditions - PM Peak Hour o8282018

1: Mt. Pleasant Road/Freese Road \& NYS Route 366 (Dryden Road) Performance by approach \begin{tabular}{llllll}
Approach \& EBB \& WB \& NB \& SB \& All

\hline Deried Deday (hr) \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0

\hline Denied Dedveh (s) \& 0.0 \& 0.2 \& 0.1 \& 0.2 \& 0.1 \&

\hline
\end{tabular} $\begin{array}{llllll}\text { Denied Dolveh }(\mathrm{s}) & 0.0 & 0.2 & 0.1 & 0.2 & 0.1 \\ \text { Total Delay }(\mathrm{hr}) & 0.7 & 0.0 & 0.4 & 1.0 & 2.1 \\ \text { Thal } & 3.4 & 0.6 & 16.6 & 1.2 & 6.2\end{array}$ $\begin{array}{lcccccc}\text { Tola Delven(s) } & 3.4 & 0.6 & 16.6 & 19.2 & 6.2 \\ \text { Stop Delay (hr) } & 0.0 & 0.0 & 0.3 & 0.9 & 1.2 \\ \text { So } & 0.1 & 0.1 & 133 & 16.4 & 3.5\end{array}$

5: Game Farm Road/Arboretum Center \& NYS Route 366 (Dryden Road) Performance by approach \begin{tabular}{lllll}
\& EB \& WB \& NB \& Al

\hline Approach \& 0.1 \& 0.0 \& 0.0 \& 0.2

Deried Dday (hr) \& 0.1

Denied Dedveh (s) \& 0.7 \& 0.0 \& 0.2 \& 0.5

Total Deay $($ (hr $)$ \& 0.9 \& 0.4 \& 0.4 \& 1.7

Total Delveh (s) \& 4.1 \& 5.4 \& 13.6 \& 5.3

Sta \& 4.3

\hline

Stop Delay (m) \& 0.0

Stop Delveh (s) \& 0.0 \& 2.8 \& 12.6 \& 1.8

\hline
\end{tabular}

Total Network Performance
Denied Dday (hr)

A6

Level of Service Calc ulations: Full Development Conditions

SimTraffic Performance Report 2020 Full Development Conditions - AM Peak Hour o8292018 5: Game Farm Road/Arboretum Center \& NYS Route 366 (Dryden Road) Performance by approach	Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.0	0.0	0.0	0.0	0.0	

 | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Total Delay (hr) | 0.0 | 1.4 | 6.7 | 0.0 | 8.2 | |
| Total Delveh (s) | 0.9 | 5.3 | 117.6 | 25.4 | 21.7 | | Total Delveh (s)

Stop Delay (hr)
Stop Delineh (s) Total Network Performance

SimTraffic Performance Report 2020 Full Development Conditions - AM Peak Hour o8/292018 1: Mt. Pleasant Road/Freese Road \& NYS Route 366 (Dryden Road) Performance by approach	Approach	EB	WB	NB	SB	Al
Deried Dday (hr)	0.0	0.1	0.0	0.0	0.1	

 $\left.\begin{array}{llllllll}\text { Total DelNeh (s) } & 3.5 & 1.4 & 38.9 & 22.1 & 9.4\end{array}\right]$ Totan Delay $(t r)$
Stop Deliveh (s)
2: Proposed Northerly Driveway \& Mt. Pleasant Road Performance by approach

Denied Dedveh (s)
$\begin{array}{lllll}\text { Total Delay }(h r) & 0.0 & 0.0 & 0.0 & 0.0 \\ \text { Total Deliner }(s) & 1.1 & 0.1 & 1.7 & 0.4 \\ \text { Sto } & 0.0 & 0.0 & 0.0 & 0.0 \\ \text { Sop Delay }(h r) & 0.3 & 0.0 & 2.6 & 0.2\end{array}$
3: Proposed Southerly Driveway \& Mt. Pleasant Road Performance by approach

Approach	EB	WB	NB	All
Deried Dday (hr)	0.0	0.0	0.0	0.0

	0.0	0.0	0.0	0.0						
Denied Deday (hr)	0.0	0.0								
Denied Delleh (s)	0.0	0.0	0.0	0.0		Denied DedNeh (s)	0.0	0.2	0.1	0.1
:---	:---	:---	:---	:---						
Total Delay $($ hr $)$	0.0	0.0	0.0	0.0						
	0.0	0								

4: Proposed Driveway \& NYS Route 366 (Dryden Road) Performance by approach Approach EB WB NB All

 $\begin{array}{lllll}\text { Dent } \\ \text { Denead Dealveh (s) } & 0.0 & 0.0 & 0.2 & 0.0 \\ \text { Total Delay (hr) } & 0.0 & 0.4 & 0.5 & 0.9 \\ & 0.9 & 0.9\end{array}$ $\begin{array}{lllcc}\text { Tota Delveh }(\mathrm{s}) & 0.5 & 1.8 & 14.9 & 2.8 \\ \text { Stop Delay }(\mathrm{s}) & 0.0 & 0.1 & 0.5 & 0.6 \\ \text { Sop Delineh }(\mathrm{s}) & 0.0 & 0.2 & 16.4 & 17\end{array}$ | Proposed Townhomes at Dryden | SimTraffic Report |
| :--- | ---: |
| SRF Associates, D.P.C. | Page 1 |

Queuing and Blocking Report

$\begin{array}{lr}\text { Proposed Townhomes at Dryden } & \begin{array}{c}\text { SimTraffic Report } \\ \text { Page } 4\end{array} \\ \text { SRF Associates, D.P.C. } & \end{array}$

Queuing and Blocking Report 2020 Full Development Conditions - AM Peak Hour o82012018 Intersection: 1: Mt. Pleasant Road/Freese Road \& NYS Route 366 (Dryden Road)

 혁 B \&

 Upsteuing Penaly (ver) Storage Eay Dist (tt)

Proposed Townhomes at Dryden	SimTraffic Report
SRF Associates, D.P.C.	Page 3

SimTraffic Report
Page 3
SimTraffic Performance Report
5: Game Farm Road/Arboretum Center \& NYS Route 366 (Dryden Road) Performance by approach
$\begin{array}{lllll}\text { Approach } & \text { EB } & \text { WB } & \text { NB } \\ 0.2\end{array}$
 Denied Delven (s) Total Delveh (s)
Stop Delay (hr)
Stop Delleh (s) Stop DelNeh (s)
Total Network Performance

Proposed Tounhomes at Dryden
SRF Associates, D.P.C.

SimTraffic Performance Report

2020 Full Development Conditions - PM Peak Hour o82292018 1: Mt. Pleasant Road/Freese Road \& NYS Route 366 (Dryden Road) Performance by approach | Approach | EB | WB | NB | SB | Al | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Deried Deay (hr) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | $\begin{array}{lllllll}\text { Denied Dediveh }(s) & 0.0 & 0.2 & 0.0 & 0.3 & 0.1\end{array}$

 2: Proposed Northerly Driveway \& Mt. Pleasant Road Performance by approach

Ttop Delay (hr)
3: Proposed Southerly Driveway \& Mt. Pleasant Road Performance by approach
Approach EB WB NB All

Aeried Dday (hr)	0.0	0.0	0.0	0.0						
Denied Ded	0.0					Deried Ded (eh (s)	0.0	0.1	0.1	0.0
:---	:---	:---	:---	:---						
Total Delay (hr)	0.0	0.0	0.0	0.0	$\begin{array}{lllll}\text { Tota Delven (s) } & 0.2 & 0.0 & 2.7 & 0.2 \\ \text { Stop Delay (hr) } & 0.0 & 0.0 & 0.0 & 0.0 \\ \text { Sol } & 0.0 & 0.0 & 3 . & 0 .\end{array}$					

4: Proposed Driveway \& NYS Route 366 (Dryden Road) Performance by approach Approach $\quad E B \quad$ WB \quad NB All \begin{tabular}{lllll}
\& 0.0

Denied Deday (hr) \& 0.0 \& 0.0 \& 0.0 \& 0.0

Denied DiNeh (s) \& 0.0 \& 0.0 \& 0.2 \& 0.0

\hline

Total Delay (hr) \& 0.3 \& 0.2 \& 0.3 \& 0.7

Total Delven (s) \& 1.3 \& 1.8 \& 12.4 \& 2.1

Stop Delay \& (hr) \& 0.0 \& 0.1 \& 0.3

\& 0.4

\hline
\end{tabular}

Queuing and Blocking Report

$\begin{array}{lr}\text { Proposed Townhomes at Dryden } & \begin{array}{c}\text { SimTraffic Report } \\ \text { Page } 4\end{array} \\ \text { SRF Associates, D.P.C. } & \end{array}$

Queuing and Blocking Report 2020 Full Development Conditions - PM Peak Hour o829/2018 Intersection: 1: Mt. Pleasant Road/Freese Road \& NYS Route 366 (Dryden Road)

Movemert	EB	WB	NB	SB	
Directions Seved		LTR	LTR	LTR	LTR

95ih queve (t) Link Distance (tt) Queuing Penally (ver)
Storage Bay Dist (t)

Intersection: 2: Proposed Northerly Driveway \& Mt. Pleasant Road

 UpstreamBk Time (\%) Queuing Penaly (ver)
Storage Bay Dist (t) Storage Bak Time (\%)
Queuing Penaly (veh)

Intersection: 3: Proposed Southerly Driveway \& Mt. Pleasant Road

Movemert NB

\square

	28	
95th Queueve (t)	28	
Link Distance (t)	266	

Queuing Penaly (veh)
Storage Bay Disit (t) Storage Bay Bist (II)

Proposed Tommhomes at Dyden	SimTraffic Report
SRF Associates, D.P.C.	Page 3

SimTraffic Report
Page 3

[^0]: ${ }^{2}$ Person-Trips
 ${ }^{3}$ Total estimate for all other land uses at mixed-use development site-not subject to internal trip capture computations in this estimator
 *Indicates computation that has been rounded to the nearest whole number.

[^1]: OUTPUT

