SWPPP

Stormwater Pollution Prevention Plan

for

Evergreen Apartments (PG Dryden, LLC)

1061 Dryden Road (55.-1-16) Town of Dryden - Tompkins County - New York State October 10, 2023

Prepared By:

Prepared For:

PG Dryden, LLC 46 Price Street Suite 2003 Rochester NY, 14607

1495-22

Table of Contents

Section 2	1: Project Information	1
1.1	Owner-Operator-SWPPP Contact-SWPPP Preparer Contact Information	1
1.2	Site Address, Site Map, Scope of Project, Type and Size of Project	1
Section	2: Stormwater Site Planning, Practice Selection, and Details	2
2.1 St	ormwater Management	2
2.2 Dr	ainage Analysis Methodology	2
2.3 Ex	isting Drainage Conditions	3
2.5 Pr	oposed Drainage Conditions	4
2.6	Determine Water Quality Treatment Volume (WQv)	5
2.7 Practi	Runoff Reduction by Applying Green Infrastructure Techniques and Standard Stormwater Management ces with RRv Capacity	7
2.8	Apply Standard Stormwater Management Practices to Address Remaining Water Quality Volume	7
2.9	Apply Volume Peak Rate Control Practices if Needed to Meet Requirements	7
2.10 Install	Reference the Map/Construction Drawing for the Descriptions, Dimensions, Material Specifications and ation Details for each Post-Construction Stormwater Control Practice	8
2.11	Long Term Operation and Maintenance of Post-Construction Stormwater Management Practices	8
2.12	Logs of Borehole Investigations and Supporting Geotechnical Report (if applicable)	Э
	3: Construction erosion and sediment control plans, vegetative measures & control of non-stormwater	9
3.1	Description of Temporary and Permanent Structural and Vegetative Measures	9
3.2 for All	Reference the Map/Construction Drawing for the Material Specifications, Dimensions and Installation Details Erosion and Sediment Control Practices	2
3.3 Erosio	Identification of Design Elements not in Conformance with the New York State Standard and Specifications for on and Sediment Control1	
3.4	Inspection Schedule and Operation and Maintenance Schedule of all Erosion and Sediment Control Practices1	2
3.5	Description of the Structural Practices to Divert Flows1	3
3.6	Construction Phasing and Sequencing Plans1	4
3.7 Debris	Description of Pollution Prevention Measures to Control Construction Litter, Construction Chemicals and s 14	
3.8 Const	Description and Location of any Stormwater Discharges Associated with Industrial Activity other than ruction at the Site	6
Section	4: Existing and Proposed Mapping and Plans1	6

4.1 \	/icinity Map and Project Boundary	16
4.2 E	Existing and Proposed Topography	16
4.3 L	ocation of Perennial and Intermittent Streams	16
4.4 N	Map and Descriptions of Soils from USDA Soil Survey	17
4.5 E	Boundaries of Existing Vegetation and Proposed Limits of Clearing	17
4.6 L	ocation & Boundaries of Resource Protection Areas such as Wetlands, Lakes, Ponds, etc.	17
4.7 E	Boundary and Acreage of Upstream Watershed	17
4.8 N	Name and Locations of Receiving Waters	17
4.9 L	ocation of Existing and Proposed Roads, Lot Boundaries, Buildings and Other Structures	17
	Location and Size of Staging Areas, Equipment Storage Areas, Borrow Pits, Waste Areas, and Concrete Was	
4.11	Existing and Proposed Utilities (Sewer, Water, Gas, etc) and Easements	17
	Location and Flow Paths of Existing and Proposed conveyance Systems, such as Channels, Swales, Culverts m Drains	
4.13	Location of Floodplain/Floodway Limits	17
4.14	Location and Dimensions of Proposed Channel Modifications, such as Bridge or Culvert Crossings	17
Stor	Location, Size, Maintenance Access and Limits of Disturbance of Proposed Temporary and Permanent mwater Management and Erosion and Sediment Control Practices, Including Timing and Duration of Temportices tices.	•
	Existing and Proposed Structural Elevation	
	Construction Drawings Identifying the Specific Locations and Sizes of each Post-Construction Stormwater (
	tice	
	Final Landscaping Plans	
	n 5: Record Keeping	
5.1	Copy of NOI Signed by SWPPP Preparer, NOI Acknowledgement Letter	
5.2	Contractor/Subcontractors; Name, Responsibilities, and Certification Statements	
5.3	Contractor/Subcontractors; Stormwater Training Cards and Numbers	
5.4	Documentation from NYS-Historic Preservation Office	20
5.5	Documentation from the NYSDEC Division of Fish and Wildlife, New York Heritage Program	
5.6	Wetland Permit Documentation	
5.7	MS4 SWPPP Acceptance Form (if applicable)	20
5.8 Activ	Most Current Version of the NYS-DEC SPDES General Permit for Stormwater Discharges from Constructivity	on
	,	-

5.9	Revisions to SWPPP	. 20
5.10	Corrective Action Log	. 20
5.11	Plans Stamped by a Qualified Professional	. 20
5.12	Dedication/As-Builts for all Post-Construction Stormwater Management Facilities	. 20
5.13	Notice of Termination	. 20

SECTION 1: PROJECT INFORMATION

1.1 Owner-Operator-SWPPP Contact-SWPPP Preparer Contact Information

Owner/Operator:	Contact Person:		
PG Dryden, LLC	Name: Tim Crilly		
46 Price Street, Suite 2003	Phone: (585) 732-4086		
Rochester, NY 14607	Email: tcrilly@parkgrovellc.com		

SWPPP Preparer:	Contact Person:
Marathon Engineering	Name: Adam M. Fishel, PE
840 Hanshaw Road, Suite 6	Phone: (607) 241-2917
Ithaca, NY 14850	Email: afishel@marathoneng.com

1.2 Site Address, Site Map, Scope of Project, Type and Size of Project

Address:	1061 Dryden Road
Municipality:	Town of Dryden
County:	Tompkins
Tax Parcel #s	551-16
Nearest Cross Street:	Turkey Hill Road (940')
Watershed:	Lower Fall Creek
Size:	±6.54 acres

Project Description:

This project proposes the development of six (6) townhouse buildings, one (1) maintenance garage, asphalt access road, asphalt driveways, concrete sidewalk, associated grading, drainage, erosion control, utilities and access improvements. This project includes a total of 43 townhouse units situated along a residential drive.

Based on available record mapping, it appears that there are no federally regulated wetlands within the project site according to US Fish and Wildlife Service's National Wetlands Inventory.

This project drains to Lower Fall Creek and ultimately discharges to Cayuga Lake.

An initial geotechnical investigation has been provided for this site via test pits and infiltration tests conducted by CME Associates, INC dated May 16, 2016. Based on the findings provided, most of the surface profile of the first 8' is a silty clay soil with sand.

In addition, infiltration tests were conducted within the vicinity of the proposed stormwater management practices were performed. Groundwater was not encountered within the test pits excavated as part of the infiltration rate investigation. An infiltration rate of 1.0 in/hr was used as a basis of design for the infiltration basin where 2.8 in/hr was observed.

SECTION 2: STORMWATER SITE PLANNING, PRACTICE SELECTION, AND DETAILS

2.1 Stormwater Management

The total site development area is approximately ±6.54 acres with ±4.17 acres of the site area being disturbed. Disturbed areas include areas associated with the townhouse foundation installation, asphalt road installation, concrete sidewalk installation, driveway installation, trenching for electrical conduits and utilities, grading for stormwater management practices, and installation of concrete pad for electrical equipment. The projected disturbed area exceeds the allowable site disturbance (1 acre) outlined in the New York State Department of Environmental Conservation's (NYSDEC) General Permit for Stormwater Pollutant Discharges. Therefore, a full Stormwater Pollution Prevention Plan (SWPPP) is required which includes Stormwater Quality and Quantity provisions.

The entire site is located within the jurisdiction of the Town of Dryden, NY. The Town of Dryden is classified as a Municipal Separate Storm Sewer System Community (MS4). Therefore, jurisdiction over stormwater discharges lies with the Town of Dryden. The stormwater management plan and associated grading/drainage improvements are proposed so to comply with the NYSDEC Stormwater Management Design Manual (SMDM).

Ground disturbances associated with the development include underground electrical conduit installation, minor surface grading, minor vegetation removal, installation of an asphalt access road, installation of associated driveways, installation of concrete sidewalks, installation of townhouse foundations, and concrete pads for electrical equipment. Within the disturbed area, a post-developed impervious cover of ±2.0 acres are associated with the development.

2.2 Drainage Analysis Methodology

The stormwater management and drainage analysis enclosed was prepared per the requirements outlined in the New York State Department of Environmental Conservation's Stormwater Management Design Manual (SMDM). As outlined in the SMDM, the United States Department of Agriculture Natural Resources Conservation Service's (NRCS) Urban Hydrology for Small Watersheds, Technical Release 55 (TRGG) was used to analyze the runoff characteristics associated with the site's drainage basin.

Rainfall amounts for the 1, 10, & 100-year storm events were taken from Figures 4.2, 4.3 & 4.4 respectively provided in the January 2015 SMDM. Rainfall amounts for the other storm events analyzed were taken from online data provided by <u>http://precip.eas.cornell.edu/</u> "Extreme Precipitation in New York & New England".

Three (1) Analysis Pointes (Analysis Point #1, Analysis Point #2 and Analysis Point #3) were established to analyze the pre versus post stormwater runoff rates for the project site. Analysis Point #1 is located on the southern boundary of the project adjacent to the former railroad right of way. Analysis Point #2 is located along the northern boundary of the project site. Analysis Point #3 is located at the northeast corner of the project site.

2.3 Existing Drainage Conditions

Under Pre-Development Drainage Conditions, the site was separated into three (3) subareas with three (3) analysis points given the existing topography across the site. A description of the subareas is as follows:

<u>Area #1:</u> Area 1 consists of the subject parcel as well as portions of the offsite parcel to the east. Ground cover consists of wooded and meadow areas as well as impervious and lawn areas. Surface runoff from this area tends to flow to the north/northwest/southwest where it is collected by proposed onsite storm sewer where it combines with runoff from Area #2, Area #2A & Area #2B in the Detention Basin.

<u>Area #2:</u> Area 2 consists of the subject parcel as well as portions of the offsite parcel to the east. Ground cover consists of wooded and meadow areas as well as impervious and lawn areas. Surface runoff from this area tends to flow to the south/southwest where it ultimately discharges off the site at Analysis Point #2.

<u>Area #3:</u> Area 3 consists of the subject parcel as well as portions of the offsite parcel to the northeast. Ground cover consists of wooded areas as well as impervious and lawn areas. Surface runoff from this area tends to flow to the north/northeast where it ultimately discharges off the site at Analysis Point #3.

Refer to the HydroCAD analysis provided in Appendix E for more information.

Table 1 below provides a summary of Pre-Development runoff rates (CFS) at the chosen Analysis Points.

	Analysis	Analysis	Analysis	Analysis
	Point #1	Point #2	Point #3	Point #4
1-Year	1.99	1.77	1.17	0.15
2-Year	2.81	2.55	1.52	0.21
10-Year	5.91	5.52	2.74	0.47
100-Year	13.84	13.19	5.62	1.13

<u>Table 1</u>

2.5 Proposed Drainage Conditions

Under Pre-Development Drainage Conditions, the site was separated into nine (9) subareas with four (4) analysis points given the existing topography across the site. A description of this subarea is as follows:

<u>Area #1:</u> Area 1 consists of the southeastern portion of the subject parcel as well as portions of the offsite parcel to the east. Ground cover consists of lawn, wooded, existing and proposed impervious areas. Surface runoff from this area tends to flow to the south/southwest where it ultimately discharges off the site at Analysis Point #1.

<u>Area #2:</u> Area #2 consists of the southern 1/3 of the access drives interior to the site. Ground cover generally consists of impervious roadway areas with some lawn/landscaped areas. Surface runoff is collected by the proposed storm sewers and discharges to the Bioretention Area. Discharge from the Bioretention Area combines with flow from Area #1 and Area #2B which flows into the Detention Basin where it combines with runoff from Area #2A.

<u>Area #2A:</u> Area #2A consists of the area draining directly into the Detention Basin. Ground cover consists of lawn. Surface runoff flows into the Detention Basin where it combines with discharge from the Bioretention Basin, Area #2, Area #2B and Area #1 before discharging to the Infiltration Basin.

5Area #2B: Area #2B consists of the central portion of the site. Ground cover consists of impervious areas associated with proposed pavement and roof areas as well as lawn and landscaped areas. Surface runoff flows into proposed storm sewers which combines with flow from Area #1 #2 before discharging to the Detention Basin.

<u>Area #3:</u> Area #3 consists of the area draining directly to the infiltration basin. Ground cover consists generally of lawn areas and approximately 50% of the roof area associated with the tri-plex townhome building. Surface runoff flows into the Infiltration Basin where it combines with discharge from the Detention Basin before combining with runoff from Area #6 at Analysis Point #1.

<u>Area #4:</u> Area #4 is located at the northeast corner of the site. Ground cover consists of impervious cover from the proposed driveway as well as existing driveway and roof areas along with lawn and some wooded areas. Surface runoff flows north to Analysis Point #3.

<u>Area #5:</u> Area #5 is the small perimeter area at the southwest corner of the project site. Ground cover generally consists of perimeter wooded areas with some lawn cover. Surface runoff flows west to Analysis Point #4.

<u>Area #6:</u> Area #6 is the perimeter area along the west side of the site. Ground cover generally consists of lawn with some wood cover. Surface runoff flows west to Analysis Point #1 where it combines with discharge from the Infiltration Basin.

<u>Area #7</u>: Area #7 is the perimeter area along the north side of the site. Surface cover generally consists of lawn with some impervious roof cover. Surface runoff flows northwest to Analysis Point #3.

Refer to the HydroCAD analysis provided in Appendix E for more information.

Table 2 below provides a summary of Post-Development runoff rates (CFS) at the chosen Analysis Points

Table 2

	Analysis	Analysis	Analysis	Analysis
	Point #1	Point #2	Point #3	Point #4
	(Proposed	(Proposed	(Proposed	(Proposed
1-Year	0.70	0.81	0.86	0.14
2-Year	1.00	1.04	1.11	0.21
10-Year	2.66	1.80	1.99	0.45
100-Year	13.79	3.58	4.03	1.07

Table 3 below provides a comparison of the Pre vs. Post Development runoff rates (CFS) at the chosen Analysis Points

	Analysis	Analysis	Analysis	Analysis	Analysis	Analysis	Analysis	Analysis
	Point #1	Point #1	Point #2	Point #2	Point #3	Point #3	Point #4	Point #4
	(Existing)	(Proposed	(Existing)	(Proposed	(Existing)	(Proposed	(Existing)	(Proposed
1-Year	1.99	0.70	1.77	0.81	1.17	0.86	0.15	0.14
2-Year	2.81	1.00	2.55	1.04	1.52	1.11	0.21	0.21
10-Year	5.91	2.66	5.52	1.80	2.74	1.99	0.47	0.45
100-Year	13.84	13.80	13.19	3.58	5.62	4.03	1.13	1.07

Table 3

In conclusion, this project does not substantially alter the existing site hydrology and drainage conditions.

2.6 Determine Water Quality Treatment Volume (WQv)

Per the NYSDEC Stormwater Design Manual (SMDM), Stormwater Quality is addressed by capturing and treating 100% of the runoff volume from the 90% annual storm event. This captured volume is considered the Water Quality Volume (WQv). WQv is directly related to the amount of impervious cover created/maintained on site.

As outlined in the NYSDEC SMDM, the WQv shall be calculated for 100% of the <u>new</u> impervious area. Within the disturbed area, ± 1.54 acres of impervious cover will either be constructed. As a result, using the NYSDEC's Green Infrastructure Worksheets (11/09/2015 version), the calculated total WQv to be provided is $\pm 7,405$ CF (± 0.17 ac-ft).

To address Water Quality concerns, one (1) bioretention area and one (1) infiltration base are proposed.

Bioretention Areas:

The SMDM outlines required elements to be incorporated into the design for bioretention which includes: pretreatment, separation from water table, minimum planting soil media depth and surface mulch treatments.

<u>Pretreatment</u>: As noted above, the SMDM requires that a grass filter strip and/or a gravel diaphragm be used as pretreatment. All bioretention areas will utilize a combination of stone mulch, filter fabric and outlet protection as well as a stone filter for pretreatment.

<u>Separation from Water Table</u>: The SMDM requires that a 2' vertical separation be maintained between the bottom of bioretention practices and the groundwater. Based on the geotechnical data available, we anticipate that the 2' separation can be achieved. Therefore, the bioretention areas do not need to be lined.

<u>Minimum Planting Soil Media Depth:</u> As outlined in the SMDM, the minimum bioretention soil media depth is 2.5' which equals the depth of soil media provided. The bioretention areas proposed all provide the required 2.5' minimum soil media depth.

<u>Surface Mulch Treatments</u>: The SMDM recommends that aged hardwood mulch be used as a surface treatment in the bioretention areas. However, in an effort to prolong the operational life of the bioretention area and possibly the introduction of additional phosphorus into the stormwater discharges, rolled river stone mulch on non-woven geotextile is proposed in lieu of hardwood bark mulch.

<u>Maximum Ponding Depth</u>: The SMDM recommends limiting the WQv ponding depth to no more than six (6) inches within the bioretention area. Flows in excess of the WQv would need to be discharged from the bioretention area(s) via a non-erosive outlet. The Bioretention Areas proposed all provide the 6 inches of available ponding between the stone mulch surface and the overflow outlet.

Infiltration Basin

The SMDM outlines required elements to be incorporated into the design for infiltration basins including: pretreatment, separation from water table, and infiltration requirements.

<u>Pretreatment:</u> The SMDM requires that pretreatment be sized to accommodate a minimum of 25% of the contributing WQv draining to the infiltration basin be provided. Pretreatment can be provided in the form of a sedimentation basin, sump pit, grass channel, plunge pool, or other such measures. In the event that the f_c for the underlying soils is greater than 2.00 inches per hour, pretreatment capable of accommodating 50% of the WQv must be provided. 100% of the WQv must be provided as pretreatment if the f_c for the underlying soils is greater than 5.00 inches per hour. Based on the infiltration test results observed during the geotechnical investigation (infiltration rate is 2.8 inch/hour), 50% of the WQv is provided as pretreatment via forebay in the detention basin. As a basis of design modeling the infiltration basin, an infiltration rate of 1.0 inches/hour was used.

<u>Separation from Boundary Condition (i.e., Groundwater and/or Bedrock)</u>: The SMDM requires that the bottom of the infiltration basin be separated by at least three feet from the seasonally high water table or bedrock. Four feet of separation must be provided in sole source aquifers.

Based on the geotechnical boring information, groundwater nor bedrock were not encountered within 3 feet of the proposed bottom of the infiltration basin.

<u>Infiltration Requirements</u>: Infiltration practices shall be designed to exfiltrate the entire WQv within 48 hours of the storm event and shall have a minimum soil infiltration rate of 0.5 inches per hour. As noted above, all of the infiltration tests had an infiltration rate greater than 2 inches per hour. As a basis of design modeling the infiltration basin, an infiltration rate of 1.0 inches/hour was used.

<u>Stormwater Hotspot Concern:</u> According to the NYSDEC Stormwater Management Design Manual (SMDM), a Stormwater Hotspot is defined as a land use or activity that generates higher concentrations of hydrocarbons, trace metals or toxicants than are found in typical stormwater runoff, based on monitoring studies. Residential uses are not considered stormwater hotspots.

Refer to the Green Infrastructure worksheets provided in Appendix E for more information.

2.7 Runoff Reduction by Applying Green Infrastructure Techniques and Standard Stormwater Management Practices with RRv Capacity

The goal of Runoff Reduction Volume (RRv) as defined in Chapter 4 of the NYSDEC SMDM is the 100% reduction of the Water Quality Volume (WQv) by the application of green infrastructure techniques and Stormwater Management Practices (SMPs) to replicate pre-development hydrology. However, projects may experience limitations which may prevent this design goal from being achieved.

According to the NYSDEC Green Infrastructure Worksheets, a project that utilized an infiltration basin may receive a credit equaling 90% of the storage provided or the WQv, whichever is smaller. The bioretention area and infiltration basin was sized to provide a total RRv of ± 0.324 ac-ft. which exceeds the minimum RRv of 0.032 ac-ft.

Refer to the Green Infrastructure worksheets provided in Appendix E for more information.

2.8 Apply Standard Stormwater Management Practices to Address Remaining Water Quality Volume

As stated above, 100 % of the required WQv is addressed via the bioretention area and infiltration basin. Therefore, applying standard stormwater management practices to address the remaining WQv is not required.

2.9 Apply Volume Peak Rate Control Practices if Needed to Meet Requirements

Stream Channel Protection Volume, CPv:

CPv is defined as the 24-hour extended detention of the post-development 1-year, 24-hour storm event. As discussed in the SMDM the CPv requirement does not apply where a reduction in the total CPv volume is achieved through Runoff Reduction practices. While this project proposes Runoff Reduction practices as noted above, a total reduction of the CPv is not feasible. The enclosed calculations provided in Appendix C illustrates the initial total required CPv is ±0.239 ac-ft. As noted in the SMDM, volume reduction achieved through green infrastructure can be deducted from the required CPv. Therefore, using the provided RRv noted above, the adjusted total required CPv is ±0.069 ac-ft. This volume is temporarily detained within the proposed Detention Pond. With the provided average head on the low flow outlet, a 2.0" diameter orifice would be required to discharge the required CPv over 24 hours. Given the clogging potential of such an orifice size, a 2" perforated riser pipe is used which will connect to the orifice. Refer to Appendix C for CPv calculations for the Detention Pond.

Overbank Flood Control, Qp (10 year storm event):

Chapter 4 of the NYSDEC SMDM requires that Qp control be provided such that the peak discharge rate from the 10-year storm event under post-development conditions be reduced so to not exceed that of the predevelopment conditions. As illustrated in Table 3 below, the 10-year storm event discharge rate under postdevelopment conditions is less than that of the pre-development conditions. Therefore, this project satisfies the Overbank Flood Control (Qp) requirement.

Extreme Flood Control Criteria, Qf (100 year storm event):

Chapter 4 of the NYSDEC SMDM requires that Qf control be provided such that the peak discharge rate from the 100-year storm event under post-development conditions be reduced so to not exceed that of the predevelopment conditions. As illustrated in Table 3 below, the 100-year storm event discharge rate under postdevelopment conditions is less than that of the pre-development conditions. Therefore, this project satisfies the Extreme Control (Qf) requirement.

2.10 Reference the Map/Construction Drawing for the Descriptions, Dimensions, Material Specifications and Installation Details for each Post-Construction Stormwater Control Practice

Refer to Appendix B, for a reduced-size set of the Site Development Plans

2.11 Long Term Operation and Maintenance of Post-Construction Stormwater Management Practices

1. General Landscape Maintenance

 Landscape maintenance shall include necessary watering, cultivation, weeding, pruning, wound dressing, disease and insect pest control, protective spraying, straightening plants which lean or sag, adjustments of plants which settle or are planted too low, mowing, replacement of mulch that has been displaced, etc. Such maintenance shall be performed as needed or annually at minimum.

2. Grass Area

- Fertilize and lime as needed to maintain dense vegetation.
- Mow as required during the growing season to maintain grass heights at 4 inches to 6 inches.
- Inspect for pools of standing water. Re-grade to restore design grade and re-vegetate.
- Use of heavy equipment for mowing and removing plants/debris should be avoided to minimize soil compaction. Disturbed areas should be stabilized with seed and mulch, or revetment as necessary.

3. SWMF Maintenance

One Bioretention Area, one Detention Pond, and one infiltration basin have been selected to provide Stormwater Management for this project. Long term operation and maintenance and requirements are as follows:

- Plantings: Monitor annually and replace those that appear to be diseased, dead or dying in a timely manner. Prune and weed areas as necessary or at minimum once annually.
- Landscaping: Mow upland and adjacent areas as needed during growing season, and seed bare areas.
- Dewatering: If dewatering is required in the event of an unanticipated failure of the soil in the filtration zone, the standing water shall be pumped out of the bioretention areas. The water shall be discharged to

a stabilized outlet location and be conveyed off the project site in a non-erosive manner and the owner and engineer of record should be contacted to evaluate potential cause for failure and/or remediation plan.

- Storm Sewer Pipes: Inspect annually and remove any accumulated debris and sediment; make any necessary repairs.
- Bioretention Areas: Washed stone aggregate is proposed as a surface pretreatment for the bioretention areas. Areas where the stone has become silted up shall be excavated and fresh, clean stone applied as needed. Stone condition should be evaluated annually.
- Infiltration Basin: Washed stone aggregate is proposed as a surface treatment for the infiltration basin. Areas
 where the stone has become silted in shall be excavated and fresh, clean stone applied as needed. Stone
 condition should be evaluated annually. (Under no circumstances should heavy equipment be used to excavate
 the silted in stone.)

2.12 Logs of Borehole Investigations and Supporting Geotechnical Report (if applicable)

The boring logs are provided in Appendix E.

SECTION 3: CONSTRUCTION EROSION AND SEDIMENT CONTROL PLANS, VEGETATIVE MEASURES & CONTROL OF NON-STORMWATER DISCHARGES

3.1 Description of Temporary and Permanent Structural and Vegetative Measures

Permanent stabilization requires the soil restoration methods to be followed in lawn areas and seeding/ plantings be installed per the contract documents (see Appendix B).

A) Temporary Stabilization

Topsoil stockpiles and disturbed portions of the site where construction activity temporarily ceases for 14 days or more will be stabilized with temporary seed and mulch within 7 days of cessation of work. The temporary seed shall be annual rye applied at the rate of 100 lbs. per acre. After seeding, each area shall be mulched with 2 tons per acre or 3 bales per 1000 square feet of straw. The straw mulch is to be tacked into place by a disk with blades set nearly straight. Areas of the site that are to be paved will be temporarily stabilized by applying geotextile and stone sub-base until bituminous pavement can be applied.

B) Soil Restoration

Soil restoration **is a required practice** applied across areas of a development site where soils have been disturbed and will be vegetated in order to recover the original properties of the soil. Soil restoration is applied in the cleanup, restoration, and landscaping phase of construction followed by the permanent establishment of an appropriate, deep-rooted groundcover to help maintain the restored soil structure.

Soil restoration is required in areas where existing impervious areas will be converted to pervious areas. Contractor shall keep all construction equipment, staging and storage within the existing/proposed <u>paved</u>

areas only. In areas where construction equipment use is required in and around areas to be landscaped, the Contractor shall perform Soil Restoration as discussed below.

Limits of Soil Restoration are shown on the Grading and Erosion Control Plans.

Below is a summary of soil disturbance activities related to land development, soil types and the requirements for soil restoration for each activity as outlined in the NYSDEC Stormwater Design Manual, Dated January 2015:

For soils having HSG A and/or B classification:

- Areas where topsoil is stripped only no change in grade:
 - 1. Apply 6 inches of topsoil and protect area from any ongoing construction activities.
- Areas of cut or fill:
 - 1. Aerate and apply 6 inches of topsoil
- Heavy traffic areas on site (especially in a zone 5-25 feet around buildings but not within a 5 foot perimeter around foundation walls):
 - 1. Apply full soil restoration ² (de-compaction and compost enhancement)
- Areas where Runoff Reduction (bioretention) and/or Infiltration Practices are applied)
 - 1. Restoration not required, but may be applied to enhance the reduction specified for appropriate practices.

For soils having HSG C and/or D classification:

- Areas where topsoil is stripped only no change in grade:
 - 1. Aerate¹ and apply 6 inches of topsoil and protect area from any ongoing construction activities.
- Areas of cut or fill:
 - 1. Apply full soil Restoration²
- Heavy traffic areas on site (especially in a zone 5-25 feet around buildings but not within a 5 foot perimeter around foundation walls):
 - 1. Apply full soil restoration ² (de-compaction and compost enhancement)
- Areas where Runoff Reduction (bioretention) and/or Infiltration Practices are applied)
 - 1. Restoration not required, but may be applied to enhance the reduction specified for appropriate practices.
- Redevelopment Projects

1. Soil restoration is required on redevelopment projects in areas where existing impervious area will be converted to pervious area.

¹ Aeration includes the use of machines such as tractor-drawn implements with coulters making a narrow slit in the soil, a roller with many spikes making indentations in the soil, or prongs which function like a mini-subsoiler.

² per "Deep Ripping and De-compaction, DEC 2008". A copy is provided in Appendix E.

Compost shall be aged, from plant derived materials, free of viable weed seeds, have no visible free water or dust produced when handling, pass through a half inch screen and have a pH suitable to grow desired plants.

During periods of relatively low to moderate subsoil moisture, the disturbed soils are returned to rough grade and the following Soil Restoration steps applied:

- 1. Apply 3 inches of compost over subsoil;
- 2. Till compost into subsoil to a depth of at least 12 inches using a cat-mounted ripper, tractor mounted disc, or tiller, mixing and circulating air and compost into subsoils;
- 3. Rock-pick until uplifted stone/rock materials of four inches and larger size are cleaned off the site;
- 4. Apply topsoil to a depth of 6 inches;
- 5. Vegetate as required by approved plan;

Contractor shall locate and avoid all underground utilities during soil restoration procedures. If depths of utilities are located in areas to be restored which prevent the achieving the soil restoration depth, the Contractor shall contact the Civil Engineer of Record and request directive.

At the end of the project an inspector should be able to push a 3/8" metal bar 12 inches into the soil just with body weight.

A copy of NYSDEC's Deep Ripping and Decompaction guidelines are provided in Appendix E.

C) <u>Permanent Stabilization</u>

Disturbed portions of the site where construction activities permanently cease shall have 6" of topsoil placed and be stabilized with permanent seed no later than 7 days after the last construction activity. Lime and fertilizer will be applied as determined by soil tests. After seeding, each area shall be mulched as described above. All slopes greater than or equal to 3H: 1V shall have jute or other erosion control fabric applied. Seed mix shall be as specified by the owner at the seed suppliers recommended rates.

D) Off-Site Vehicle Tracking

If the stabilized construction entrance is not sufficient to reduce vehicle tracking of sediments to an acceptable amount the contractor shall install a truck wash station on-site. The paved street adjacent to the

site entrance will be swept daily to remove any excess mud, dirt, or rock tracked from the site. Dump trucks hauling material from the construction site will be covered with a tarpaulin.

3.2 Reference the Map/Construction Drawing for the Material Specifications, Dimensions and Installation Details for All Erosion and Sediment Control Practices

See Appendix B, Site Development Plans:

3.3 Identification of Design Elements not in Conformance with the New York State Standard and Specifications for Erosion and Sediment Control

N/A

3.4 Inspection Schedule and Operation and Maintenance Schedule of all Erosion and Sediment Control Practices <u>Contractor Maintenance Inspection Requirements</u>: The Permittee/Operator agrees to have the *"Trained Contractor"* inspect the erosion and sediment control practices and pollution prevention measures being implemented within the active work area daily to ensure that they are being maintained in effective operating condition at all times. If deficiencies are identified, the contractor shall begin implementing corrective actions within one business day and shall complete the corrective actions in a reasonable timeframe.

As defined in the NYSDEC SPDES General Permit, a "Trained Contractor" is defined as an employee from the contracting (construction) company that has received four (4) hours of NYSDEC endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity. After receiving the initial training, the trained contractor shall receive four (4) hours of training every three (3) years. Copies of the trained contractor certification cards shall be kept in Appendix D of this SWPPP. Copies of the Contractor's daily inspections shall be kept in Appendix H of this SWPPP.

<u>Qualified Inspector Inspection Requirements</u>: The Permittee/Operator agrees to contract with a "Qualified Inspector" to conduct an assessment of the site prior to the commencement of construction and certify in this inspection report that the appropriate erosion and sediment controls described in the SWPPP have been adequately installed or implemented to ensure overall preparedness of the site for the commencement of construction.

As defined in the NYSDEC SPDES General Permit, a *"Qualified Inspector"* is a person that is knowledgeable in the principles and practices of erosion and sediment control, such as a licensed Professional Engineer, Certified Professional in Erosion and Sediment Control (CPESC), Registered Landscape Architect, New York State Erosion and Sediment Control Certificate Program holder or other Department endorsed individuals(s).

It can also mean someone working under direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided that person has training in the principles and practices of erosion and sediment control. Training in the principles and practices of erosion and sediment control means that the individual working under the direct supervision of the licensed Professional Engineer or Registered Landscape Architect has received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity. After the initial training, the individual working under the direct supervision of the licensed Professional Engineer or Registered Landscape Architect shall receive four (4) hours of training every three (3) years.

It can also mean a person that meets the *Qualified Professional* qualifications in addition to the Qualified Inspector qualifications.

"Qualified Professional" means a person that is knowledgeable in the principles and practices of stormwater management and treatment, such as a licensed Professional Engineer, Registered Landscape Architect or other Department endorsed individual(s). Individuals preparing SWPPPs that require the post-construction stormwater management practice component must have an understanding of the principles of hydrology, water quality management practice design, water quantity control design, and, in many cases, the principles of hydraulics. All components of the SWPPP that involve the practice of engineering, as defined by the NYS Education Law (See Article 145), shall be prepared by, or under the direct supervision of, a professional engineer <u>licensed to practice</u> <u>in the State of New York.</u>

Note: Inspections of any post-construction stormwater management practices that include structural components, such as a dam for an impoundment, shall be performed by a licensed Professional Engineer.

Following the commencement of construction, site inspections shall be conducted by the qualified professional once every 7 calendar days. During each inspection, the qualified professional will record the following information:

- 1) On a site map, indicate the extent of all disturbed site areas.
- Indicate site areas that are expected to undergo initial disturbance or significant site work within the next 14day period;
- 3) Indicate on a site map all areas of the site that have undergone temporary or permanent stabilization;
- 4) Indicate all disturbed site areas that have not undergone active site work during the previous 14- day period
- 5) Inspect all sediment control practices and record the approximate degree of sediment accumulation as a percentage of the sediment storage volume (for example, 10 percent, 20 percent, 50 percent);
- 6) Inspect all erosion and sediment control practices and record all maintenance requirements such as verifying the integrity of barrier or diversion systems (earthen berms or silt fencing) and containment systems (sediment basins and sediment traps). Identify any evidence of rill or gully erosion occurring on slopes and any loss of stabilizing vegetation or seeding/mulching. Document any excessive deposition of sediment or ponding water along barrier or diversion systems. Record the depth of sediment within containment structures, any erosion near outlet and overflow structures.
- 7) Document all deficiencies that are identified with the implementation of the SWPPP.

Copies of the inspection reports prepared by the Qualified Professional shall be provided to the Applicant, the Applicant's Contractor and the Town of Kingsbury's staff within 24 hours of the inspection.

See Appendix J for full schedule and corrective log book.

3.5 Description of the Structural Practices to Divert Flows Not applicable.

3.6 Construction Phasing and Sequencing Plans

- Contractor shall denote the location of equipment storage/laydown, job trailers, porta-potty, waste receptacles, etc. On the construction drawings prior to the start of work.
- Protect existing vegetation and environmental features to remain.
- Protect existing utilities to remain
- Install perimeter sediment controls.
- Install stabilized construction entrance and temporary haul roads as necessary.
- Complete clearing and grubbing.
- Strip and stockpile topsoil within those areas to undergo minor grading activities. Topsoil stockpile shall be encircled by silt fence. Contractor to denote location of topsoil stockpile area(s) on the construction drawings.
- Begin site grading.
- Stabilize denuded areas within 14 days of last construction activity in each area.
- Install/place concrete washout area(s). Contractor to denote location of concrete washout area(s) on the construction drawings.
- Install utilities, solar arrays, conduits, etc.
- Complete grading, reapply topsoil, and perform soil restoration on any and all areas that were disturbed or compacted as a result of the construction operations.
- Install permanent seeding, fertilizer and mulch to stabilize the soils.
- Complete construction of stone driveway.
- Remove all temporary sediment control products after soils are stabilized.

3.7 Description of Pollution Prevention Measures to Control Construction Litter, Construction Chemicals and Debris Note: blanks to be filled in prior to the pre-construction meeting

- I. Pollution Prevention Measures (from Construction-Phase Operations other than soil disturbance)
 - A. _____ (site superintendent responsible for the day-to-day site operations) will be the spill prevention and cleanup coordinator.
 - B. Product Specific Practices:

The following product specific practices will be followed onsite:

- 1. Petroleum Products All onsite vehicles will be monitored for leaks and receive regular preventive maintenance to reduce the chance of leakage. Petroleum products will be stored in tightly sealed containers that are clearly labeled. Any asphalt substances used onsite will be applied according to the manufacturer's recommendations.
- Fertilizers Fertilizers used will be applied only in the minimum amounts recommended by the manufacturer. Once applied, fertilizer will be worked into the soil to limit exposure to stormwater. Storage will be in a covered shed. The contents of any partially used bags of fertilizer will be transferred to a sealable plastic bin to avoid spills.

- Paints All containers will be tightly sealed and stored when not required for use. Excess paint will not be discharged to the storm sewer system but will be properly disposed according to manufacturers' instructions or state and local regulations.
- 4. Concrete Trucks Concrete trucks will not be allowed to wash out or discharge surplus concrete or drum wash water on the site.
- 5. Waste Disposal All waste materials will be collected and stored in a securely lidded metal dumpster rented from _______, which is a licensed solid waste management company in _______ (city). The dumpster will meet all local and any State solid waste management regulations. All trash and construction debris from the site will be deposited in the dumpster. The dumpster will be emptied as often as necessary, and the trash will be hauled to _______ (landfill). No construction waste materials will be buried onsite. All personnel will be instructed regarding the correct procedure for waste disposal. Notices stating these practices will be posted in the office trailer. _______ (site superintendent responsible for the day-to-day site operations), will be responsible for seeing that these procedures are followed.
- Sanitary Waste All sanitary waste will be collected from the portable units a minimum of three times per week by ______, a licensed sanitary waste management contractor.
- 8. Recyclable Waste All recyclable waste (cardboard, wood etc.) shall be collected and recycled.
- II. On-Site Storage of Construction and Waste Materials
 - A. Spill Prevention Inventory: The materials or substances listed below are expected to be present onsite during construction: (Check appropriate boxes)

Concrete	Detergents	Roofing shingles
Metal studs	Paints (enamel and latex)	🗌 Wood
Petroleum-based products	Fertilizers	🗌 Tar
Masonry block	Cleaning solvents	Other (specify)

B. Material Management Practices

The following are the management practices that will be used to reduce the risk of spills or other accidental exposure of materials and substances listed above to stormwater runoff:

- Products will be kept in original containers unless they are not resealable.
- Original labels and material safety data sheets will be retained; they contain important product information.
- An effort will be made to store only enough product required to do the job.
- All materials stored onsite will be stored in a neat, orderly manner in their appropriate containers and, if possible, under a roof or other enclosure and/or on blacktop.
- Products will be kept in their original containers with the original manufacturer's label.
- Substances will not be mixed with one another unless recommended by the manufacturer.
- Whenever possible, all of a product will be used up before disposing of the container.
- Manufacturer's recommendations for proper use and disposal will be followed.
- The site superintendent will inspect daily to ensure the proper use and disposal of materials onsite.
- Manufacturers' recommended methods for spill cleanup will be clearly posted and site personnel will be made aware of the procedures and the location of the information and cleanup supplies.
- Materials and equipment necessary for spill cleanup will be kept in the material storage area onsite. Equipment and materials will include but not be limited to brooms, dustpans, mops, rags, gloves, goggles, kitty litter, sand, sawdust, and plastic and metal trash containers specifically for this purpose.
- All spills will be cleaned up immediately after discovery.
- The spill area will be kept well ventilated and personnel will wear appropriate protective clothing to prevent injury from contact with a hazardous substance.
- Spills, of any size, of toxic or hazardous material will be reported to the appropriate State or local government agency.
- The spill prevention plan will be adjusted to include measures to prevent this type of spill from recurring and how to clean up the spill if there is another one. A description of the spill, what caused it, and the cleanup measures will also be included.

3.8 Description and Location of any Stormwater Discharges Associated with Industrial Activity other than Construction at the Site

N/A

SECTION 4: EXISTING AND PROPOSED MAPPING AND PLANS

4.1 Vicinity Map and Project Boundary

See Appendix A for site location map.

4.2 Existing and Proposed Topography

See Appendix B.

4.3 Location of Perennial and Intermittent Streams

The project drains to Lower Fall Creek and ultimately discharges to Cayuga Lake.

4.4 Map and Descriptions of Soils from USDA Soil Survey

Soil Name – Symbol	Hydrologic Soil Group
Bath, Valois, and Lansing soils, 35	С
to 60 percent slopes- BtF	
Chenango gravelly loam,	А
fan, 0 to 8 percent	
slopes- CnB	
Darien gravelly silt loam,	C/D
2 to 8 percent slopes- DgB	

See Appendix E for soil survey information.

4.5 Boundaries of Existing Vegetation and Proposed Limits of Clearing

See Appendix B.

4.6 Location & Boundaries of Resource Protection Areas such as Wetlands, Lakes, Ponds, etc.

Wetlands were not identified within this parcel according to US Fish and Wildlife wetland Mapper, as shown in Appendix A.

4.7 Boundary and Acreage of Upstream Watershed

Upstream watershed was not evaluated in this analysis.

4.8 Name and Locations of Receiving Waters

Site drains to Lower Fall Creek and ultimately discharges to Cayuga Lake.

4.9 Location of Existing and Proposed Roads, Lot Boundaries, Buildings and Other Structures See Appendix B.

4.10 Location and Size of Staging Areas, Equipment Storage Areas, Borrow Pits, Waste Areas, and Concrete Washout

Areas

The above referenced items will be determined at the preconstruction meeting. The contractor shall be responsible for denoting the location of these areas on the plans.

4.11 Existing and Proposed Utilities (Sewer, Water, Gas, etc) and Easements

See Appendix B.

4.12 Location and Flow Paths of Existing and Proposed conveyance Systems, such as Channels, Swales, Culverts, and Storm Drains

See Appendix B.

4.13 Location of Floodplain/Floodway Limits

This project site appears to be located within "Zone C" which is classified as areas outside the 500 year flood plain. Refer to Appendix A for a copy of the FEMA FIRM Map.

4.14 Location and Dimensions of Proposed Channel Modifications, such as Bridge or Culvert Crossings See Appendix B.

Evergreen Apartments – SWPPP 1061 Dryden Road Town of Dryden, NY

4.15 Location, Size, Maintenance Access and Limits of Disturbance of Proposed Temporary and Permanent Stormwater Management and Erosion and Sediment Control Practices, Including Timing and Duration of Temporary Practices

See Appendix B.

4.16 Existing and Proposed Structural Elevation

See Appendix B.

4.17 Construction Drawings Identifying the Specific Locations and Sizes of each Post-Construction Stormwater Control Practice

See Appendix B.

4.18 Final Landscaping Plans

See Appendix B.

SECTION 5: RECORD KEEPING

5.1 Copy of NOI Signed by SWPPP Preparer, NOI Acknowledgement Letter

The NOI and NOI acknowledgement letter (when received) are located in Appendix C.

5.2 Contractor/Subcontractors; Name, Responsibilities, and Certification Statements

The owner or operator shall have each of the contractors and subcontractors identified sign a copy of the following certification statement before they commence any construction activity:

CONTRACTORS' CERTIFICATION

I hereby certify under penalty of law that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the *qualified inspector* during a site inspection. I also understand that the *owner or operator* must comply with the terms and conditions of the most current version of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater discharges from construction activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. Furthermore, I am aware that there are significant penalties for submitting false information, that I do not believe to be true, including the possibility of fine and imprisonment for knowing violations.

1. Name (please print)	
	Prime or General Contractor, President (or print title)
Signature:	Date:
For (Company Name and A	ddress) Responsible For
2. Name (please print)	
	ubcontractor, President (or print title)
Signature:	Date:
For (Company Name and A	ddress) Responsible For
3. Name (please print)	
	ubcontractor, President (or print title)
Signature:	Date:
For (Company Name and A	ddress) Responsible For

5.3 Contractor/Subcontractors; Stormwater Training Cards and Numbers

Appendix D: will include Contractor/ Subcontractor training cards and numbers as soon as the contractor is selected.

5.4 Documentation from NYS-Historic Preservation Office

Nothing of cultural or historic significance has been identified on this site as shown by the Cultural Resource Information System found in Appendix A.

5.5 Documentation from the NYSDEC Division of Fish and Wildlife, New York Heritage Program

Appendix A shows that no rare or endangered plants or animals have been identified as possible habitation within this site as shown by the NYSDEC Environmental Resource Mapper.

5.6 Wetland Permit Documentation

Appendix A contains information identifying no wetlands present on this site according to US Fish and Wildlife Service's National Wetlands Inventory.

5.7 MS4 SWPPP Acceptance Form (if applicable)

The MS4 SWPPP Acceptance Form is located in appendix I.

5.8 Most Current Version of the NYS-DEC SPDES General Permit for Stormwater Discharges from Construction Activity

Appendix F includes the current version of the SPDES General Permit.

5.9 Revisions to SWPPP

Appendix K includes any revisions to the SWPPP.

5.10 Corrective Action Log

Appendix J includes the Corrective Action Log.

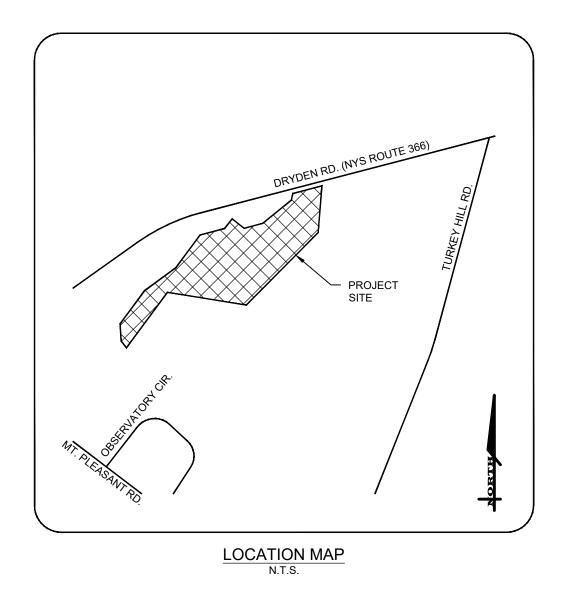
5.11 Plans Stamped by a Qualified Professional

Appendix B includes the Site Plans, which are stamped by Adam M. Fishel a licensed Professional Engineer.

This SWPPP has been prepared by Adam Fishel, a licensed Professional Engineer.

5.12 Dedication/As-Builts for all Post-Construction Stormwater Management Facilities

Not applicable.

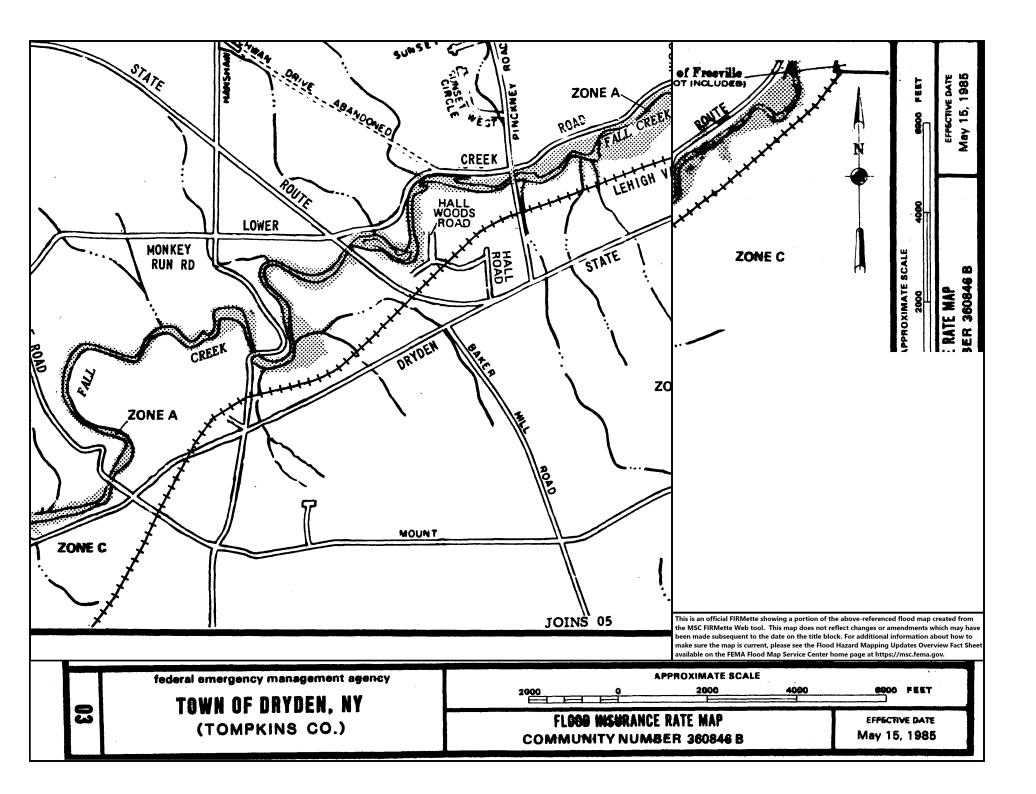

5.13 Notice of Termination

Appendix C will include the NOT, once completed.

Appendix A

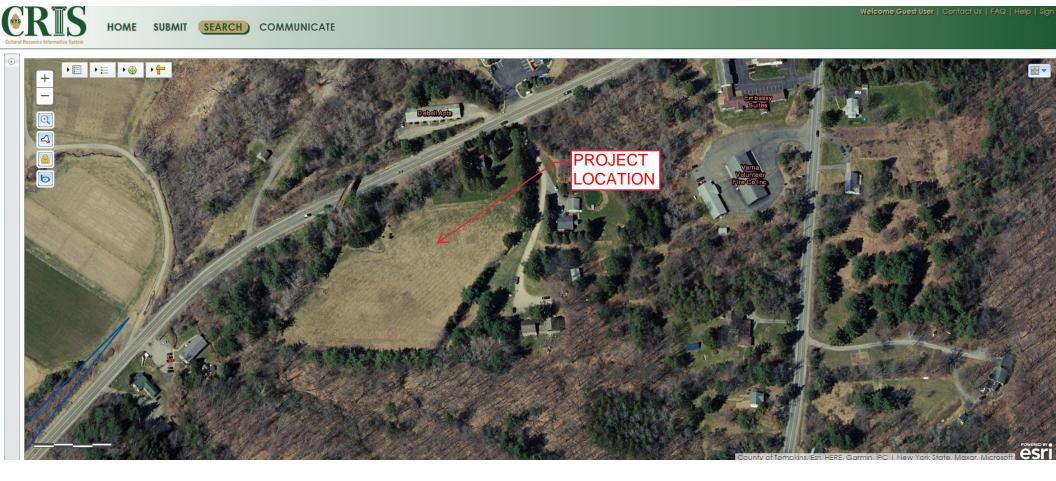
Maps and Figures

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey


MAP LEGEND				MAP INFORMATION		
Area of Interest (AOI)		Spoil Area		The soil surveys that comprise your AOI were mapped at		
Area of I	nterest (AOI)	0	Stony Spot	1:20,000.		
Soils		۵	Very Stony Spot	Warning: Soil Map may not be valid at this scale.		
Soil Map	Unit Polygons	Ŵ	Wet Spot	Enlargement of maps beyond the scale of mapping can cause		
🛹 Soil Map	Unit Lines	∆ 8	Other	misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of		
Soil Map	Unit Points	-	Special Line Features	contrasting soils that could have been shown at a more detailed		
Special Point Feat		Water Features		scale.		
Blowout			Streams and Canals	Please rely on the bar scale on each map sheet for map		
🖾 🛛 Borrow F		ansporta	tion	measurements.		
💥 🛛 Clay Spo	t		Rails	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:		
Closed E	epression	~	Interstate Highways	Coordinate System: Web Mercator (EPSG:3857)		
💥 Gravel P	t	~	US Routes	Maps from the Web Soil Survey are based on the Web Mercato		
Gravelly	Spot	~	Major Roads	projection, which preserves direction and shape but distorts		
🔕 Landfill		~	Local Roads	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more		
👗 🛛 Lava Flo	v Ba	ackgroun	d	accurate calculations of distance or area are required.		
🚲 Marsh or	_	100	Aerial Photography	This product is generated from the USDA-NRCS certified data a of the version date(s) listed below.		
🙊 Mine or 0	Quarry					
Miscellar	eous Water			Soil Survey Area: Tompkins County, New York Survey Area Data: Version 18, Sep 10, 2022		
O Perennia	Water			Soil map units are labeled (as space allows) for map scales		
🗸 🛛 Rock Ou	crop			1:50,000 or larger.		
Saline S	oot			Date(s) aerial images were photographed: Apr 1, 2020—Oct		
Sandy S	oot			2020		
	Severely Eroded Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background		
Sinkhole	·			imagery displayed on these maps. As a result, some minor		
Slide or \$	Slip			shifting of map unit boundaries may be evident.		
<u>J</u> 2						
ø Sodic Sp						

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
BtF	Bath, Valois, and Lansing soils, 35 to 60 percent slopes	0.8	12.9%
CnB	Chenango gravelly loam, fan, 0 to 8 percent slopes	0.1	2.2%
DgB	Darien gravelly silt loam, 2 to 8 percent slopes	5.4	84.9%
Totals for Area of Interest		6.4	100.0%



NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Environmental Resource Mapper

Base Map: Satellite with Labels ➤ Using this map

U.S. Fish and Wildlife Service **National Wetlands Inventory**

Wetland Inventory

March 23, 2023

Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

- Freshwater Forested/Shrub Wetland
 - Freshwater Pond

Freshwater Emergent Wetland

Lake Other Riverine This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Appendix B

Site Development Plans

(reduced size)

SITE DEVELOPMENT PLANS

FOR

PG DRYDEN, LLC

1061 DRYDEN ROAD / NYS RT. 366

SITUATED IN:

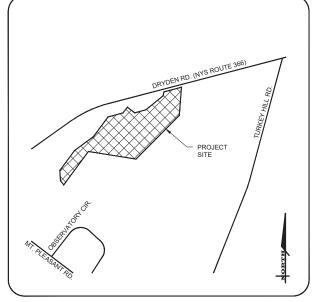
TOWN OF DRYDEN - TOMPKINS COUNTY - NEW YORK

PROJECT CONTACTS:

APPLICANT: TIM CRILLY PG DRYDEN, LLC **46 PRINCE STREET** ROCHESTER, NY 14607 (585) 481-6091

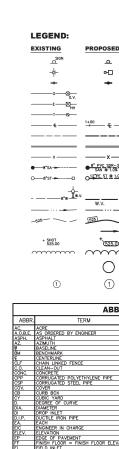
ARCHITECT: JAMES FAHY DESIGN 2024 WEST HENRIETTA ROAD ROCHESTER, NY 14623 (585) 272-1650

SANITARY SEWER: RICK YOUNG TOWN OF DRYDEN DEPARTMENT OF PUBLIC WORKS **61 EAST MAIN STREET** DRYDEN, NY 13053 (607) 844-5188


ELECTRIC: **NEW YORK STATE ELECTRIC & GAS** 18 LINK DRIVE **BINGHAMTON, NY 13904** (607) 343-5283

SURVEYOR: LEE DRESSER, L.S. TG MILLER. PC 605 W STATE STREET SUITE A ITHACA, NY 14850 (607) 272-6477

CIVIL ENGINEER: ADAM M. FISHEL, PE MARATHON ENGINEERING 840 HANSHAW ROAD, SUITE 12 **ITHACA, NY 14850** (607) 241-2917


WATER: **BOLTON POINT WATER SYSTEM** STEVE RIDDLE 1402 EAST SHORE DRIVE **ITHACA, NY 14850** (607) 277-0660

GAS: **NEW YORK STATE ELECTRIC & GAS 18 LINK DRIVE BINGHAMTON, NY 13904** (607) 343-5283

LOCATION MAP

COPYRIGHT ©2023 MARATHON ENGINEERING OF ROCHESTER, P.C.

DESIGNER CONTACT STATEMENT: MARATHON ENGINEERING IS RESPONSIBLE FOR THE DESIGN OF THIS PROJECT. JOAM M. FISHEL, PE IS THE DESIGNER AND IS FAMILIAE WITH THE NYSDOT STANDARDS AND REQUIREMENTS AND SHALL BE CONTACTED AT D7) 241-2917 TO RESOLVE ISSUES OR PROBLEMS DURING CONSTRUCT REVISIONS, INCLUDING REVISIONS NECESSARY DUE TO FIELD CONDIT

ED
-
-
2+00
0R-35
0.0%
<u>1.0%</u>
<u>1.0%</u>
<u>1.0%</u>
<u>1.0%</u>

	SIGN
	LIGHT POLE
	POWER POLE
	GAS MAIN & VALVE
	ELECTRIC CONDUIT & STRUCTURE
	TELEPHONE CONDUIT & STRUCTURE
00	CENTERLINE AND STATIONING
-	RIGHT-OF-WAY OR PROPERTY LINE
-	CURB
_	FENCE (DESCRIPTION)
_	SANITARY SEWER WITH MANHOLE
	STORM SEWER, MANHOLE & FIELD/DROP INLET
<u>w</u> .v	WATER MAIN WITH HYDRANT & GATE VALVE
-	CENTERLINE OF SWALE
-	CONTOUR
	DRAINAGE FLOW ARROW
	SPOT ELEVATION

CONTOUR
DRAINAGE FLOW ARROW
SPOT ELEVATION
TREE LINE
TREE PROTECTION
PARKING SPACE COUNT

ABBREVIATIONS

TERM	Π	ABBR.	TERM
ACRE		LS	LUMP SUM
AS ORDERED BY ENGINEER		I T.	IFFT
ASPHALT		MB.	MAILBOX
AZIMUTH		M.O.	MIDDLE ORDINATE
BASELINE		MON.	MONUMENT OR MONTH
BENCHMARK		MCGS	MONROE COUNTY GEODETIC SURVEY
CENTERLINE		M.H.	MANHOLE
CHAIN LINKED FENCE		NEC.	NECESSARY
CLEAN-OUT		N.I.C.	NOT-IN- CONTRACT
CONCRETE		NTS	NOT TO SCALE
CORRUGATED POLYETHYLENE PIPE		N/F	NOW OR FORMERLY
CORRUGATED STEEL PIPE		PÁV'I.	PAVEMENT
COVER		PE	POLYETHYLENE PIPE
CURB BOX		PPE	PERFORATED POLYETHYLENE PIPE
CUBIC YARD		PC	POINT OF CURVATURE
DEGREE OF CURVE		PI	POINT OF INTERSECTION
DIAMETER		PT	POINT OF TANGENCY
DROP INLET		PVC	POINT OF VERTICAL CURVATURE
DUCTILE IRON PIPE		PVI	POINT OF VERTICAL INTERESECTION
EACH		PVT	POINT OF VERTICAL TANGENCY
ENGINEER IN CHARGE		PP	POWER POLE
ELEVATION		P R	PROPERTY LINE
EDGE OF PAVEMENT			RADIUS
FINISH FLOOR = FINISH FLOOR ELEVATION		RCP	REINFORCED CONCRETE PIPE
FIELD INLET		RG&E	ROCHESER GAS AND ELECTRIC
FRAME		R.O.W.	RIGHT-OF-WAY
FINISH PAD = GARAGE FLOOR ELEVATION		RT.	RIGHT
FEET		RTC	ROCHESTER TELEPHONE COMPANY
GAS MAIN		SA.	SANITARY SEWER
GALLON		ST.	STORM SEWER
GRAVEL		STA.	STATION
GUIDE RAIL		STY.	STORY
HORIZONTAL CONTROL LINE		SY	SQUARE YARD
HYDRANT		Τ.	TANGENT DISTANCE
INVERT		TGL	THEORETICAL GRADE LINE
IRON PIPE OR IRON PIN		TYP.	TYPICAL
LENGTH OR LENGTH OF CURVE		VC	VERTICAL CURVE
LINEAR FEET		VTP	VITRIFIED TILE PIPE
LIGHT POST (PRIVATE)		Δ	CENTRAL ANGLE

Ĺ	IST OF DRAWINGS					
DWG TITLE						
COVER SHEET						
	BOUNDARY & TOPOGRAPHIC MAP					
C1.0	NOTES SHEET					
C2.0	SITE PLAN (1 OF 2)					
C2.1	SITE PLAN (2 OF 2)					
C3.0	GRADING, DRAINAGE AND EROSION CONTROL PLAN (1 OF 2)					
C3.1	GRADING, DRAINAGE AND EROSION CONTROL PLAN (2 OF 2)					
C4.0	UTILITY PLAN (1 OF 2)					
C4.1	UTILITY PLAN (2 OF 2)					
C5.0	LIGHTING AND LANDSCAPING PLAN					
C6.0	DETAIL SHEET (1 OF 6)					
C6.1	DETAIL SHEET (2 OF 6)					
C6.2	DETAIL SHEET (3 OF 6)					
C6.3	DETAIL SHEET (4 OF 6)					
C6.4	DETAIL SHEET (5 OF 6)					
C6.5	DETAIL SHEET (6 OF 6)					
C7.0	DRIVEWAY PLAN (1 OF 3)					
C7.1	DRIVEWAY PLAN (2 OF 3)					
C7.2	DRIVEWAY PLAN (2 OF 3)					
C8.0	TRUCK TURN PLAN					
\subseteq						

OWNER / APPLICANT:

PG DRYDEN, LLC 46 PRINCE STREET ROCHESTER, NY 14607

SOIL RESTORATION REQUIREMENTS					
TYPE OF SOIL DISTUBANCE	RESTORATION	REQUIREMENTS	COMMENTS/EXAMPLES		
NO SOIL DISTURBANCE	RESTORATION NOT REQUIRED		PRESERVATION OF NATURAL FEATURES		
MINIMAL SOIL DISTURBANCE	RESTORATION IS NOT REQUIRED		CLEARING & GRUBBING		
	HSG A & B HSG C & D				
AREAS WHERE TOPSOIL IS STRIPPED ONLY - NO CHANGE TO GRADE	APPLY 6 INCHES OF TOPSOIL	AERATE* & APPLY 6 INCHES OF TOPSOIL	PROTECT AREA FROM ANY ONGOING CONSTRUCTION ACTIVITIES		
	HSG A & B	HSG C & D			
AREAS OF CUTS OR FILLS	AERATE & APPLY 6 INCHES OF TOPSOIL	APPLY FULL SOIL RESTORATION**			
HEAVY TRAFFIC AREAS (ESEPCIALLY WITHIN A ZONE OF 5- 25 FFET AROUND BUILDINGS, BUT NOT WITHIN 5 FEET OF THE FOUNDATION WALLS)	APPLY FULL SOIL RESTORATION (DE-COMPACTION & COMPOST ENHANCEMENT)				
AREAS WHERE RUNOFF REDUCTION AND OR INFILTRATION PRACTICES ARE APPLIED	SOIL RESTORATIO REQUIRED, BUT N TO ENHANCE THE SPECIFIED FOR AF PRACTICES	REDUCTION	KEEP CONSTRUCTION EQUIPMEN FROM CROSSING THESE AREAS. PROTECT NEWLY INSTALLED PRACTICES FROM ANY ONGOINC CONSTRUCTION ACTIVITIES, CONSTRUCT A SINGLE PHASE OPERATION FENCE AREA		
REDEVELOPMENT PROJECTS	SOIL RESTORATIO ON REDEVELOPM AREAS WHERE EX IMPERVIOUS ARE CONVERTED TO F	ENT PROJECTS IN ISTING AS WILL BE			

*Aeration includes the use of machines such as tractor-drawn implements with coulters making a narrow slit in the soil, a roller with many spikes making indentations in the soil, or prongs which

** Per "Deep Ripping and De -compaction, DEC 2008"

- NOTES 1 DURING PERIODS OF RELATIVELY LOW TO MODERATE SUBSOIL MOISTURE. THE DISTURBED JBSOILS ARE RETURNED TO ROUGH GRADE AND THE FOLLOWING SOIL RESTO
- IPLIED: APPLY 3 INCHES OF COMPOST OVER SUBSOIL TILL COMPOST INTO SUBSOIL TO A DEPTH OF AT LEAST 12 INCHES USING A CAT MOUNTED RIPPER, TRACTOR-MOUNTED DISC, OR TILLER, MIXING, AND CIRCULATING AIR AND COMPOS
- INTO SUBSOILS ROCKPICK UNTIL UPLIFTED STONE/ROCK MATERIALS OF FOUR INCHES AND LARGER SIZE ARE
- APPLY TOPSOIL TO A DEPTH OF 6 INCHES

EROSION CONTROL

- 1. CERTIFICATION THE STORM WATER POLITION PREVENTION PLAN (SWPPP) WHICH INCLUDES THE CENTIFICATION: THE STORM WATER FOLLOTION HERVENTION FDWT(SWHPY), WHILH TROCLOUES THE GRADING PLAN, "EROSION CONTROL PLAN," REGISION CONTROL NOTES", ALONG WITH THE "STANMAGE F DEFINES AND MEETS THE REQUIREMENTS OF THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION, INVESEC), LATES' STORM WATER REGULATIONS. AGE REPORT
- 2. CONTRACTOR RESPONSIBILITY, ALL CONTRACTORS AND SUB-CONTRACTORS SHALL CERTIFY WITHIN HEY WILL IMPLEMENT AND MAINTAIN STOP
- 3. INSPECTION EROSION CONTROL (EC) MEASURES INSTALLED AND MAINTAINED BY THE SITE WORK INGREDITION - ENCISION CONTINUL LES JIERENDES BITISTILLES AND UNINTATIES DE TIES SIE WORK CONTRACTOR ARE SUBJECT OT INTEREVIEW AND APPROVAL OF THE: MUNICIPALITY, DESIGN ENGINEER, NYSDEC, AND OWNER'S REPRESENTATIVE. IMMEDIATE ACTION BY THE CONTRACTOR SHALL BE TAKEN IF ADDITIONAL OR CORRECTIVE MEASURES ARE REQUIRED BY ANY ONE OF THESE OTTED REVIEWERS. EROSION CONTROL MEASURES NOT SPECIFICALLY SHOWN ON CONTRACT DRAWINGS (I.E., STRAW BALES, COLLARS, FABRICS, ETC.) SHALL BE INSTALLED AS WARRANTED BY FIELD CONDITIONS, AND AS DIRECTED BY THE AFOREMENTIONED
- 4. NOTIFICATION AS DESIGN ENGINEER, OUR OFFICE HAS NOTIFIED THE OWNER OF THE INSPECTION NUREMENTS UNDER GP-0-20-002. DISTURBANCES OF 1.0 ACRE OR GREATER REQUIRE THAT THE OWNER FILE DTICE OF INTEIN (10.0) AND A SWIPPP WITH THE NYSDEC UNDER STATE POLLUTANT DISCHARGE ELIMINATI THE (ISPDES) GENERAL PERMIT INFO-02-010.11 THE REGULATIONS REQUIRE THAT A LICENSED PROFESSIONAL COMPLETE A WEEKLY INSPECTION (THROUGHOUT THE PERIOD OF LAND DISTURBANCE
- 5. PRE-CONSTRUCTION THE APPROPRIATE EROSION CONTROL MEASURES AS DEFINED BY THE CONSTRUCTION DOCUMENTS SHALL BE INSTALLED PRIOR TO THE START OF ANY CONSTRUCTION ACTIVITIES. A PRE-CONSTRUCTION MEETING WITH THE TOWN OF DRYDEN SHALL OCCUR PRIOR TO THE START OF ANY CONSTRUCTION ACTIVITIES.
- 6. TOPSOIL UPON COMPLETION OF THE STOCKPILE STRIPPING OPERATION. STOCKPILES SHALL BE STABILIZED IN NCE TO NYSDEC REGULA
- SLOPES UPON COMPLETION OF GRADING, SLOPES WITH A GRADIENT OF ONE FOOT VERTICAL TO HORIZONTAL (1 ON 3) OR GREATER SHALL BE: TOPSOILED, SEEDED, FERTILIZED AND MULCHED OR TH SPECIFIED ON CONTRACT DRAWINGS.
- DUST THE CONTRACTOR SHALL APPLY WATER AND/OR CALCIUM CHLORIDE, AS CONDITIONS WARRANT, TO CONTROL WIND BORN EROSION. THIS MEASURE APPLIES TO: HAUL ROADS, CUT AND FILL OPERATIONS, SUB-BASE AND ANY OTHER EXPOSED SURFACES.
- OPERATION & MAINTENANCE THROUGHOUT THE PERIOD OF CONSTRUCTION AND PRIOR TO ESTABLISHING FINAL GROUND COVER THE SITE CONTRACTOR IS RESPONSIBLE FOR THE OPERATION AND MAINTENANCE OF THE TEMPORARY EROSION CONTROL MEASURES. FOR EXAMPLE, THE SILTATION FACILITIES SHALL BE RE-EXCAVATED WHEN THE VOLUME (3600 CUBIC FEETIOISTURBED ACRE) IS REDUCED BY ONE-HALF OR MORE OF ITS SPECIFIED CAPACITY AND/OR THE MATERIAL IS WITHIN ONE FOOT OF THE DISCHARGE POIN
- 10. WORK STOPPAGE ALL DISTURBED AREAS NOT TO BE WORKED WITHIN 14 DAYS MUST BE SEEDED WITHIN 7 DAYS FROM THE LAST CONSTRUCTION ACTIVITY IN THAT AREA
- 11. TEMPORARY STABILIZATION TEMPORARY STABILIZATION SHALL REQUIRE 4 TONS OF STRAW/ ACRE OF DISTURBANCE PLACED WITH TACKIFIER OR ROLLED WITH A TRACKED VEHICLE TO ENSURE NOT DISPLACED.
- 12. WINTER STABILIZATION ALL WINTER STABILIZATION METHODS IDENTIFIED IN THE NYS 'BLUE BOOK' SHALL ED FOR ANY DISTURBANCE OR NON-STABILIZED AREAS FROM NOVEMBER 15TH - APRIL 1
- 13. SUBSOIL RESTORATION ALL AREAS TO BE RESTORED AS LAWN SHALL BE RESTORED PER CHAPTER 5 (5.1.6) OF THE NEW YORK STATE STORMWATER DESIGN MANUAL AND THE SOLR RESTORATION TABLE (2014) SOLR RESTORATION REQUIREMENTS) SHOWN ON THE PLANS. THE PROJECT SOLLS ARE "MPORLOGIC SOL GROUP D AND SHALL BE RESTORED AS SPECIFIED.
- 14. SEQUENCE THE CONTRACTOR SHALL INSTALL EROSION CONTROL MEASURES IN THE FOLLOWING SEQUENCE LIESS AUTHORIZED OTHERWISE AT PRE-CONSTRUCTION MEETING: INSTALL PERIMETER SEDIMENT CONTROLS, I.E. EROSION FENCING. INSTALL STABILIZED CONSTRUCTION ENTRANCE.

 - INSIALL STABILIZED CONSTRUCTION ENTRANCE.
 PROTECT VEGETATION TO REMAIN.
 CLEARING AND CONSTRUCT DIVERSIONARY SWALES, AND SEDIMENT BASINS.
 COMPLETE CLEARING AND GRUBBING OPERATION.
 PLACE EROSION CONTROL MEASURES AT TOPSOIL.
 CONSTRUCT SWALES AND SILT ATION DEVICES AS EARTHWORK OPERATIONS PROGRE

 - I CONSTRUCT SWALES AND SILTATION DEVICES AS EARTHWORK OPERATIONS PROGRESS. MAINTAIN ERSONO CONTROL MEASURES AND PLACE ADDITIONAL MEASURES AS EARTHWORK AND UNDERGROUND UTILITIES ARE CONSTRUCTED RESITORE AREAA SA SPIENED BY CONTRACT DOCUMENTS. REMOVE ERGSION CONTROL MEASURES AS AREAS ARE REESTABLISHED WITH GROUND COVER.

UTILITIES

- STORM
- 1.1 REGULATIONS STORM SEWERS AND APPURTENANCES SHALL BE CONSTRUCTED IN CONFORMANCE WITH THE LATEST REGULATIONS OF THE MUNICIPALITY AND ALL THERMOPLASTIC PIPE SHALL BE INSTALLED IN ACCORDANCE WITH ASTM D-3221.
- 1.2 MATERIALS THE CONTRACTOR MAY USE THE FOLLOWING PIPE MATERIAL FOR THE MAIN SEWER AS ALLOWED BY THE MUNICIPALITY. PROVIDING THAT THE ROUGHNESS COEFFICIENT ("N" FACTOR' IS 0.013 OR BETTER
 - IER: REINFORCED CONCRETE PIPE (RCP), CLASS III HIGH DENSITY CORRUGATED POLYETHYLENE PIPE (PE), AASHTO M-294, TYPE S, ASTM D-3350.
- 1.3 ROOF DRAINAGE ALL ROOF DRAINAGE SHALL BE COLLECTED AND PIPED TO THE STORM SEWER SYSTEM
- 1.4 TESTING UPON COMPLETION OF SYSTEM INSTALLATION, THE MAIN SEWER SYSTEM AND LEADS TO STRUCTURES SHALL BE FLUSHED AND LAMPED TO THE SATISFACTION OF THE MUNICIPALITY.

TOWN OF DRYDEN MATERIAL AND PERFORMANCE STANDARDS FOR WATER SYSTEM EXTENSIONS

- Water pipe Cl 52 Ductile Iron double cement lined (in accordance with AWWA C151 and AWWA C104).
- AWWA C104).
- Services type K copper tubing (min. size determined by the design professional). Corp stop and curb stops - Brass body ball type.
- Valves Resilient seat gate with stainless steel bonnet blots (in accordance with AWWA C509).
- 6. Hydrants Dry barrel (5 1/4") break top type with 6" MJ connection, guard valve, anchoring tee, one 4 1/2" nozzle (NST) and two 2 1/2" nozzles (NST) in accordance with AWWA C502
- Bedding not required for mains in earth when at least 6" of earth exists beneath the bottom of the main (in rock it is to be bedded a minimum of 8" on all sides).
- Fipe bedding (mains) #1 stone, #2 stone or a mix of #1 and #2 stone a minimum of 8'' on all sides. 1a stone bedding will not be allowed.
- 9. Refer to the Bolton Point Rules and Regulations for further information on testing and installation
- 10 Backfill Select earth (native material 6" and smaller in size and within 2% of optimum moisture content) to 2' below asphalt subgrade within the ditchlines of an existing or proposed Town road and to the surface in other areas. The top 2' below e asphalt subgrade within the ditchlines of an existing or proposed Town road shall be Item 4 Base material as outlined in the Town Road Specifications. 11. Placement and compaction of backfill - 8" lifts compacted to 95% of maximum
- density ASTM 698 between the ditch lines. 12. Surface restoration of existing Town roads - 2.5" of Type 3-asphalt binder and 1.5"
- of Type 7 asphalt top. 13. Work within a County or State ROW will be governed by the respective standards.
- AGREEMENT

REPRESENTATIVE.

CONSTRUCTION

TOWN OF DRYDEN MATERIAL AND PERFORMANCE STANDARDS FOR SANITARY SEWER SYSTEM EXTENSIONS

- Sewer pipe SDR 35 PVC bedded a minimum of 8" on all sides.
- Pipe size Main 8" (min.), Laterals 4" (min.).

Benchwork and flow channel - cast-in-place concret

- Depth of cover Mains 6' min. (except 4' in areas without conflict with water mains or services). Laterals 3' min.
- 4. Pipe bedding # 1 stone, # 2 stone or a mix of #1 and #2 stone. 1a stone bedding will not be allowed.
- Lateral connections to existing sewer Romac Industries Style CB sewer saddle, 4" SDR 35 PVC extended to the edge of the road Right-of-Way (ROW), cap end.
- 5. Lateral connections to new sewer SDR 35 PVC sanitary tee, extended to the edge of the road ROW, cap end.
- . Clean outs Shall be provided at the edge of the ROW when the homes are connected to the sewer.
- 8. Manholes precast concrete 4' diameter (5' for 3 way or interior drop) in accordance with ASTM C478 coated inside and out (including grouted joints, benchwork, and flow channel) with 2 coats of coal tar-epoxy coating.

TO THE SATISFACTION OF OWNER'S ON-SITE REPR

1. PREPARATION - PRIOR TO START OF EARTHWORK OPERATIONS THE CONTRACTOR SHALL COMPLETE THE

DLLOWING APPLICABLE ITEMS AS DEFINED BY CONTRACT DOCUMENTS: • SITE DEMOLITION - REMOVAL AND DISPOSAL OFF-SITE IN A LEGAL MANNER; STRUCTURES, UTILITIES,

CLEARING AND GRUBBING - REMOVAL AND DISPOSAL OFF-SITE IN A LEGAL MANNER; TREES, BRUSH, STUMPS

EIG. **TOPSOIL STRIPPING** - STRIP AND STOCKPILE TOPSOIL FOR REUSE. EXCESS TOPSOIL MAY BE REMOVED FROM SITE WITH APPROVAL BY OWNER AND MUNICIPALITY.

PROOF ROLLING - THE OWNER'S REPRESENTATIVE MAY REQUEST A PROOF ROLL (I.E. LOADED TEN WHEELER) OF SUBGRADE AREAS RIGOR TO FLACEMENT OF SUBBASE MATERIALS. AREAS THAT "FAIL" SHALL BE REMOVED AND REPLACED TO ACHIEVIC A PASING SUBGRADE.

PROVIDING BONDS, GOARANTEES, CENTRE PROVIDING REDLINES FOR RECORD DRAWN COMPLETION OF FINAL PUNCH LIST ITEMS.

RESPONSIBILITY - THE CONTRACTOR IS RESPONSIBLE FOR

- 10. Flow channel walls are to be vertical from the springline of the pipe to the top of the pipe and the benchwork slope at 1/2" per foot from that point to the wall of the CLOSE-OUT - THE CONTRACTOR'S WORK SCOPE INCLUDES BUT IS NOT LIMITED TO THE FOLLOWING AT PROJECT USE-OUI 10 THE SATISFAULTOR OF UTITIER OF UNDER ALT NEEDED. R ERIOVAL OF ANY CONSTRUCTION DEBINS © LEANING PAVEMENT AND WALKWAY SURFACES. © RESTORATION OF ALL IDSTURED GRASS AND LANDSCAPED AREAS. ● PROVIDING BONDS, GUARANTEES, CERTIFICATIONS, ETC. AS REQUIRED BY CONTRACT DOCUMENTS.
- 11. Frame and cover Syracuse Castings Pattern 1009 with Flow Seal Cover (Sanitary Sewer cast into the cover in 2" letters). 12. Manhole steps - Copolymer polypropylene encapsulated steel in accordance with
- ASTM C478 12" on center
- Testing Sewer mains including laterals to the edge of the ROW shall be air tested. 14. Backfill - Select earth (native material 6" and smaller in size and within 2% of optimum moisture content) to 2' below asphalt subgrade within the ditchlines of an existing or proposed Town road and to the surface in other areas. The top 2' below the asphal: subgrade within the ditchlines of an existing or proposed Town road shall be Item 4 Base material as outlined in the Town Road Specifications.
- Placement and compaction of backfill 8" lifts compacted to 95% of maximum density ASTM 698 between the ditch lines.
- 16. Surface restoration of existing Town roads 2.5" of Type 3-asphalt binder and 1.5" of Type 7 asphalt top.
- 17. Work within a County or State ROW will be governed by the respective standards Accurately record actual location of pipe runs, fittings, manholes, termination of laterals, couplings, lateral connections to the main, and invert elevations.

 ESTIMATE - COMPLETION OF A QUANTITY TAKEOFF TO DETERMINE THE VOLUME OF CUT, FILL, AND TOPSOIL.
 COMPARE AND COORDINATE WITH INFORMATION PROVIDED BY THE DESIGN ENGINEER. GRADE TOLERANCES - ESTABLISHING DESIGN SUBGRADE ELEVATIONS TO WITHIN ONE TENTH OF ONE FOOT (0.10¹) IN PAVEMENT AREAS (INCLUDING WALKS) AND TO WITHIN THIRTY-THREE HUNDREDTHS OF ONE FOOT (0.33)

EARTHWORK

- IING AREAS
- FOR ALL REMAINING AREAS. COMPACTION ACHIEVING THE SPECIFIED MINIMUM COMPACTION VALUES FOR EMBANKMENT/FILL AREAS. THE TERMS 'FILL' AND EMBANKMENT' ARE INTERCHANGEABLE. CUTS ONCE EXCAVATIONS ARE SHAPED TO THE DESIGN GRADES THE AREAS SHALL BE PROTECTED TO ASSURE THAT THE INTEGRITY OF MATERIAL IS NOT COMPROMISED BY CONSTRUCTION VEHICLES AND/OR IMPROPER DRAINAGE. AREAS DETERMINED BY CONTRACTOR TO BE NOT SUITALE FOR SUBROADE PTACEMENT SHALL BE IMMEDIATELY REPORTED WHEN THE SUBGRADE IS ESTABLISHED TO OWNERS REPRESENTATIVE. STABILIZATION MEASURES FOR CUT AREAS AND ECONSIDEED BY OWNERS REPRESENTATIVE. STABILIZATION MEASURES FOR CUT AREAS AND ECONSIDEED BY OWNERS REPRESENTATIVE. SA CHANGE TO THE BASE

- 3. TESTING THE FOLLOWING MAXIMUM DRY DENSITIES SHALL BE ACHIEVED AS MEASURED BY THE MODIFIED PROCTOR
- 95% UNDER PAVEMENTS, WALKS, AND IN STRUCTURAL FILL AREAS
 85% IN REMAINING AREAS
- THE AGREEMENT BETWEEN THE OWNER AND CONTRACTOR SHALL DEFINE THE NUMBER OF TESTS AND RESPONSIBILITY. WE RECOMMEND IN EMBANKMENT AREAS ONE PER LIFT AND/OR ONE PER 1,000 CUBIC YARDS.

SEED MIX SHALL BE TOWN & COUNTRY SEED MIX

AS MANUFACTORED OF GROCOMMAX TELE 2 S SEED MIX SHALL CONSTORE 30% CREEPING RED FESCUE 20% CATOR 3 PERENNIAL RYEGRASS

20% GATOR 3 PERENNIAL RYEGRA 20% ALL STAR 3 PERENNIAL RYEG 20% KEYSTONE 2 PERENNIAL RYE

10% KENTUCKY BLUEGRASS 98 / 85 SEEDING RATE SHALL BE 6LBS./ 1000 S.F. OF PURE LIVE SEED.

SMAN SEED COR

RATION

- 4. LIFT THICKNESS THE MAXIMUM LIFT THICKNESS UNDER PAVEMENTS, WALKS, AND STRUCTURAL FILLS SHALL BE 12 INCHES. HAND OPERATED COMPACTION FILLS SHALL NOT EXCEED 6 INCHES.
- PLANTING BEDS PROVIDE TWELVE INCHES (12") OF TOPSOIL, WEED FABRIC (AS DIRECTED BY OWNER), AND THREE INCHES (3") OF MULCH AT PLANTING BEDS. UNLESS SPECIFIED OTHERWISE ON DRAWINGS.

LIGHTING NOTES

PRIOR TO APPLICATION.

1. ALL LUMINARES TO BE AS SPECIFIED IN THE LUMINARE SCHEDULE ON THIS PLAN. 2. LIGHTING CONTOURS GENERATED USING LITEPRO SOFTWARE, VERSION 2.013 AS PROVIDED BY COLUMBIA LIGHTING, INC. AND MICROWARE CONCEPTS. LIGHTING CONTOURS REPRESENT THE ADDITIVE EFFECT OF IGHTING FIXTURES

 GUARANTEE - THE AGREEMENT BETWEEN THE OWNER AND CONTRACTOR SHALL DEFINE THE REQUIREMENTS MAINTENANCE. AND TIME TO ESTABLISH NEW TURE AND LANDSCAPING ACCEPTANCE BY THE OWNER. 2. TOPSOIL - PLACE A MINIMUM OF 4 INCHES (REQUIRED) OF TOPSOIL ON ALL DISTURBED SURFACES. FINE GRADE TO ESTABLISH THE DESIGN ELEVATIONS AND DRAINAGE PATTERNS. OBTAIN OWNER'S REPRESENTATIVE APPROVAL PRIOR TO SEEDING.

SEED - LAWN AREAS SHALL BE HYDROSEEDED WITH AN APPROVED; SEED MIXTURE, MULCH, AND FERTILIZER. TH APPLICATION RATE SHALL BE DETERMINED BY CONTRACTOR TO ESTABLISH A 'STANC' OF GRASS. THE CONTRAC SHALL SUBMIT MATERIAL AND APPLICATION SPECIFICATIONS TO THE OWNERS HERESENTATURE FOR APPROVAL.

4. PLANT STOCK - PLANT MATERIALS SHALL BE IN ACCORDANCE WITH "AMERICAN STANDARD FOR NURSERY ST THE CONTRACTOR SHALL SUBMIT PLANT MATERIAL SPECIFICATIONS TO THE OWNER'S ON-SITE REPRESENTAT

5. PLANT LOCATIONS - THE PLANT LOCATIONS DEPICTED ON THE PLAN MAY BE FIELD ADJUSTED (SO THEY DO NOT

UTILITIES) AND TO THE SATISFACTION OF OWNER'S REPRESENTATIVE

- LIGHTING FATURES.
 LIGHTING CALCULATIONS ARE PERFORMED IN ACORDANCE WITH IESNA PROCEDURES.
 LIGHTING CONTRACTOR SHALL PROVIDE SHIELDS RESULTING IN ZERO LIGHT SPILLAGE TO ADJACENT
- PROPERTIES. 5. REFER TO ARCH. PLANS FOR ROUTING OF SITE ELECTRICAL.

RESTORATION AND LANDSCAPING

FOR APPROVAL PRIOR TO DELIVERY TO THE SITE

SEED & MULCH

GENERAL

- Fittings Ductile Iron double cement lined (in accordance with AWWA C151 and

1. APPLICABILITY - THE NOTES AND INFORMATION PROVIDED ON THIS SHEET ARE APPLICABLE TO ALL "C" SERIES DRAWINGS. THE "C" SERIES DRAWINGS COVER SITE RELATED IMPROVEMENTS OUTSIDE THE BUI BUILDING ENVELOPE INCLUDES ALL AREA WITHIN 5' OUTSIDE OF THE BUILDING'S EXTERIOR WALL

MARATHON

ENGINEERING

CASCADE DRIV

COCHESTER, NY 14614 8 5 - 4 5 8 - 7 7 7 0

840 HANSHAW RD, STE

ITHACA, NY 14850 607-241-2917

www.marathoneng.com

S

⊢

2

2

ш

>

S

PLAN

Z

ш

Σ

ОР

DEVEL

ΞL

JOB NO:

SCALE:

DRAWN

DATE:

DESIGNED:

REVISIONS

OPYRIGH

DATE BY REVISION

9/21/23 AF TOWN SUBMITTAL

0/11/23 AF TOWN SUBMITTAL

> Ä

D íg

AD NS

Р

NWO

1495-22

1"=30'

8/30/23

23 MARATHON FN OF NEW

C-1.0

CONSTRUCTION

ADAM M. FISHEL

DRAWING TITLE

Notes Sheet

1 of 18

SHEET No: 1495-22

JOB No

RLJ

AMF

AN

AD

ZZ

XO ₂₀

ÜÀ

NEW

2. MAPPING - THE EXISTING UNDERGROUND UTILITIES WERE PLOTTED BASED ON RECORD MA ERS. THE ENGINEER MAKES NO WARRANTY AS TO THE LOCATION, SIZE, TYPE, ELEVATION, AND/OR NUMBER OF TING UTILITIES. THE CONTRACTOR SHALL BE RESPONSIBLE FOR DETERMINING THE HORIZONTAL AND VERTICAL ATION OF UTILITIES IN THE VICINITY OF THE NEW INFRASTRUCTURE.

3. UTILITY STAKEOUT - THE CONTRACTOR SHALL NOTIFY UDIG NY (1-800-962-7962) FOR A UTILITY STAKEOUT 48 IN ADVANCE OF COMMENCING WORK. STAKEOUT OF PRIVATE UTILITIES SHALL BE COORDINATED WITH THE

4. PROPERTY PROTECTION - THE CONTRACTOR IS RESPONSIBLE FOR DAMAGE TO EXISTING PAVEMENT, CURBS WALKS, LAWNS, TREES, ETC. CAUSED BY THEIR CONSTRUCTION OPERATIONS. ALL DAMAGE SHALL BE REPARED OF REPLACED BY THE CONTRACTOR TO THE OWNER'S ASTISFACTION AT IN A DAMAGE SHALL BE REPARED OF MALESCALE AND A DAMAGE AND A DA

ACCESS - THE CONTRACTOR SHALL PROVIDE SATISFACTORY VEHICULAR ACCESS TO ALL ADJOINING PROPERTIES, PRIVATE ROADWAYS, PARKING FACILITIES, AND PUBLIC STREETS DURING CONSTRUCTION.

6. SITE SAFETY - PRIOR TO AND THROUGHOUT CONSTRUCTION, THE CONTRACTOR SHALL POST SIGNAGE IN CONFORMANCE WITH THE REQUIREMENTS OF THE LOCAL MUNICIPALITY AND OCCUPATIONAL HEALT HAD SAFETY ACT (OHSA). JOB SAFETY AND MAINTENANCE AND PROTECTION OF TRAFFIC IS THE RESPONSIBILITY OF THE CONTRACTOR.

7. EXCAVATIONS - ALL EXCAVATIONS SHALL BE BACKFILLED/BARRICADED TO THE SATISFACTION OF THE OWNER'S ATIVE AT THE CONCLUSION OF EACH WORKING DAY

MAINTENANCE - PUBLIC STREETS, PRIVATE DRIVES AND PARKING FACILITIES SHALL BE KEPT FREE OF F MATERIALS. ALL AREAS SHALL BE SWEPT CLEAN AT THE END OF EACH WORKING DAY AND/OR AS DIRECTED OWNER'S ON-SITE REPRESENTATIVE.

9. CONSTRUCTION STORAGE - STORAGE OF EQUIPMENT AND MATERIALS SHALL BE WITHIN A SPECIFIED AND URED AREA AS DETERMINED IN CONTRACT DOCUMENTS OR AS SPECIFIED BY THE OWNER'S ON-SIT

10. PERMIT(S) - PRIOR TO CONSTRUCTION, THE CONTRACTOR SHALL OBTAIN THE NECESSARY PERMITS FROM THE APPLICABLE MUNICIPALITY OR AGENCY. THE CONTRACTOR IS RESPONSIBLE FOR ALL BONDS AND INSURANCES AN THE OWNER IS RESPONSIBLE FOR PERMIT FEES UNLESS OTHERWISE STATED IN THE OWNER CONTRACTOR

11. INTERIM CONDITIONS - THE CONTRACTOR IS RESPONSIBLE TO MAINTAIN POSITIVE DRAINAGE AWAY FROM BUILDINGS AND WITHIN PROJECT AREA TO A STABILIZED OUTLET THROUGHOUT THE CONSTRUCTION PERIOD. THIS MAY REQUIRE INTERIM GRADING, SHIMMOO F PAVEMENT ETC. THAT IS NOT SPECIFICALLY SHOWN ON THE PLANS AND SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.

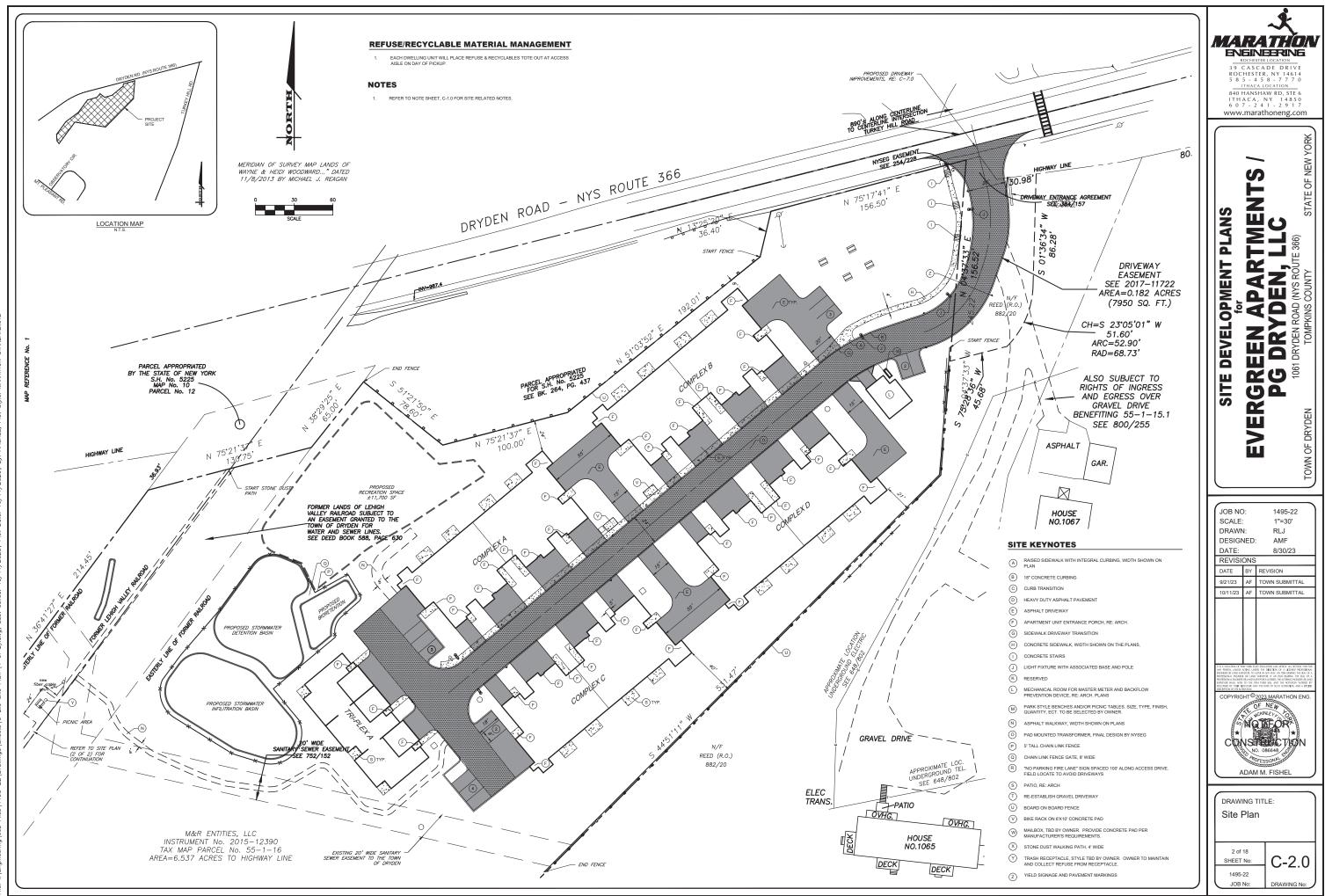
12. SPECIFICATIONS - TECHNICAL SPECIFICATIONS, IF SUPPLIED AS PART OF CONTRACT DOCUMENTS, ARE INTENDED TO AID AND HELP DEFINE THE CONTRACTOR'S WORK SCOPE. IF DISCREPANCIES OCCUR THE CONTRACTOR SHALL REQUEST A CLARFICATION.

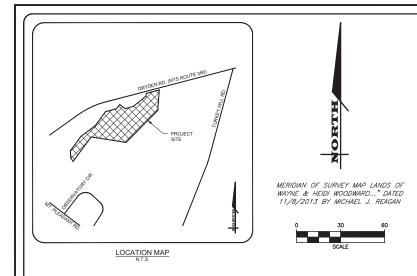
1. STAKEOUT - THE CONSTRUCTION STAKEOUT SHALL BE PERFORMED BY A LICENSED LAND SURVEYOR USING CONTROL PROVIDED ON THE "LAYOUT PLAN". THE BUILDING FOOTPRINT(S), DATED 12/23/22 WERE PROVIDED BY HOLT ARCHITECTURE. DISCREPANCIES WITH BUILDING(S), CONTROL POINTS, AND/ OR TIE DIMENSIONS SHALL BE REPORTED TO THE DESIGN ENGINEER (PRIOR TO THE INSTALLATION OF IMPROVEMENTS) FOR CORDINATION AND CLARRICATION

2. BOUNDARY - BOUNDARY INFORMATION WAS TAKEN FROM BOUNDARY AND TOPOGRAPHIC MAP PREPARED BY TG R ENGINEERS AND SURVEYORS DATED 10/21/2015 AND IS SHOWN FOR GRAPHICAL REPRESENTATION ONLY

3. LAYOUT - DIMENSIONS SHOWN, WHERE APPLICABLE, SHALL BE FROM THE FACE OF CURB UNLESS SPECIFICALLY

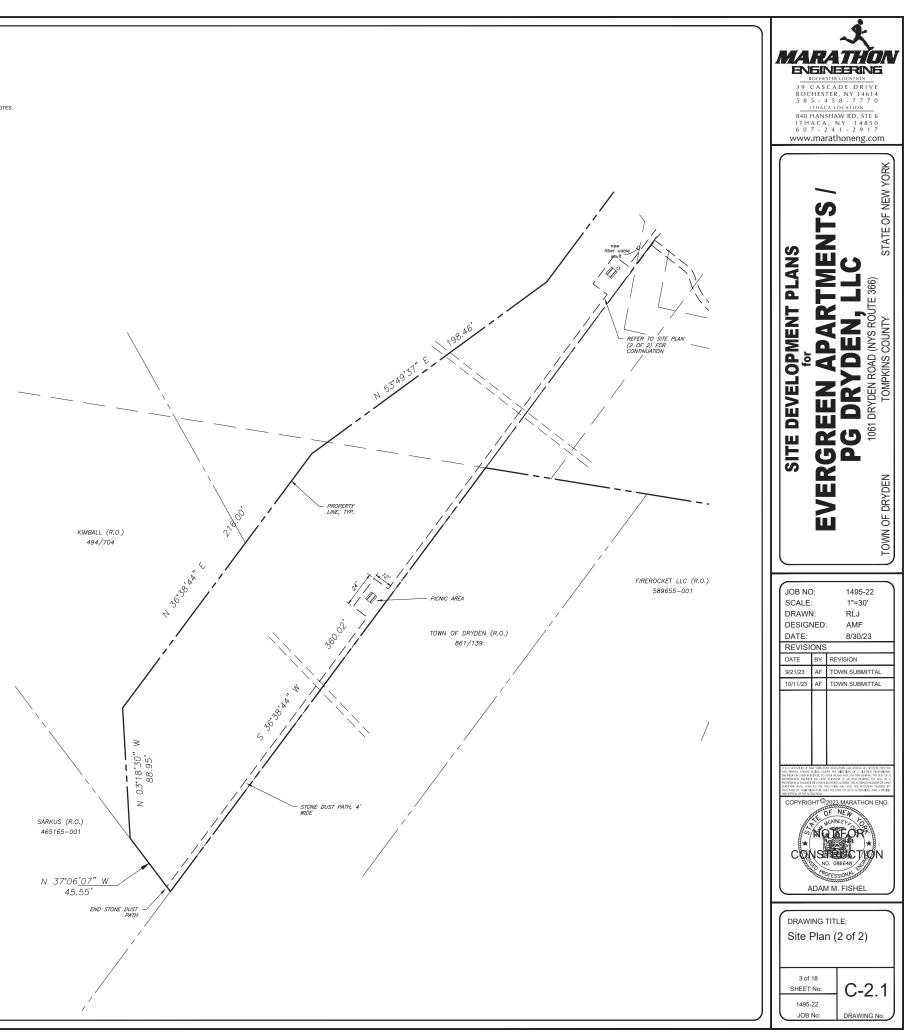
4. DEMOLITION - CLEARING AND GRUBBING SHALL BE LIMITED TO THE SITE BOUNDARIES OR WITHIN THE "WORK LIMIT LINE" AS DEFINED ON THE PLAN. TREES AND OBJECTS DESIGNATED FOR REMOVAL SHALL BE COORDINATED AND FIELD VERIFIED WITH PROJECT ON SITE REPRESENTATIVE. ALL MATERIALS SHALL BE LEGALLY DISPOSED OF OF-SITE OR RETURNED TO OWNER AS DIRECTED BY CONTRACT DOCUMENTS. ALL ITEMS NOT SPECIFICALLY CALLED OUT TO BE REMOVED SHALL REMAIN.

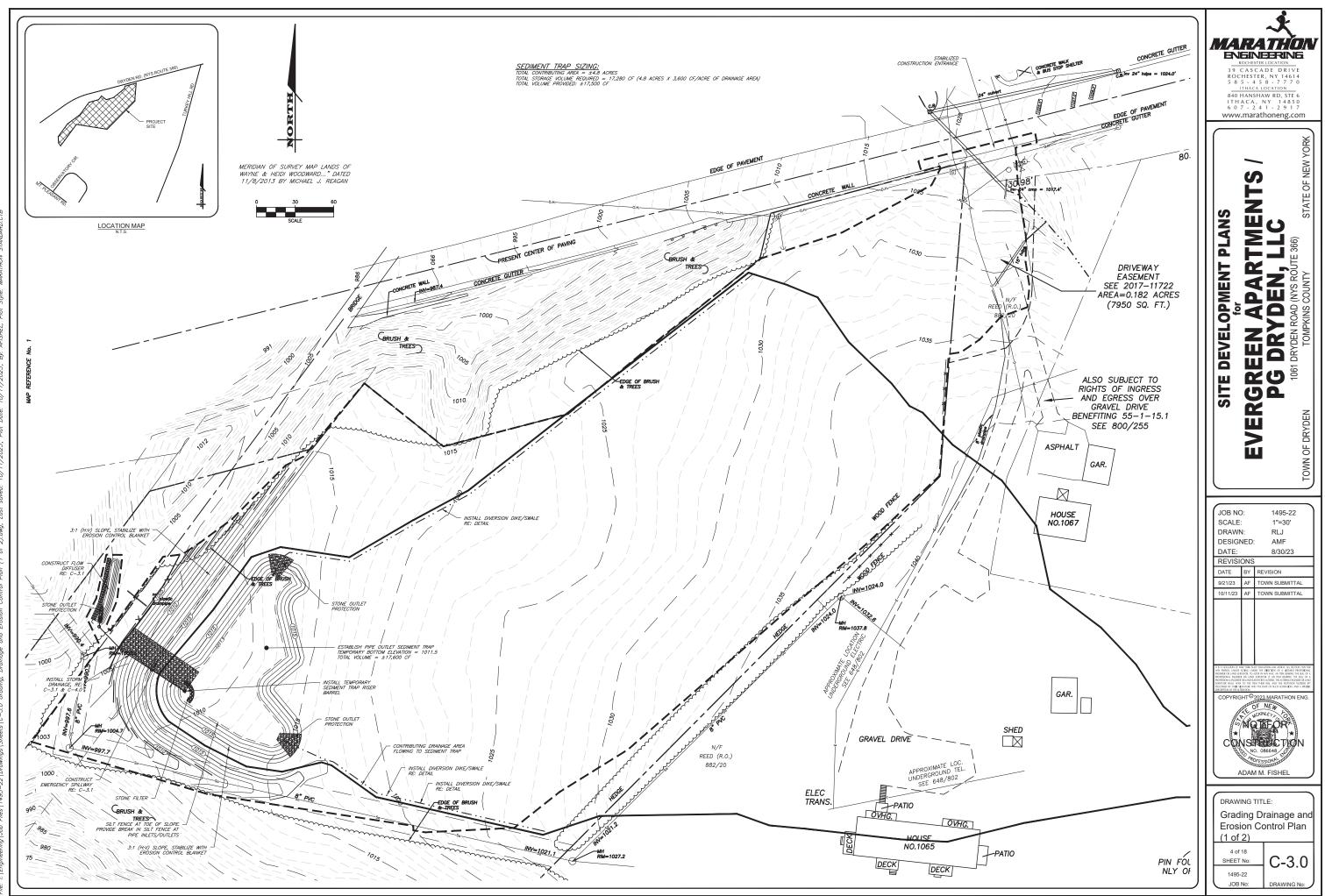

TIAL INSTALLATION CONFLICTS

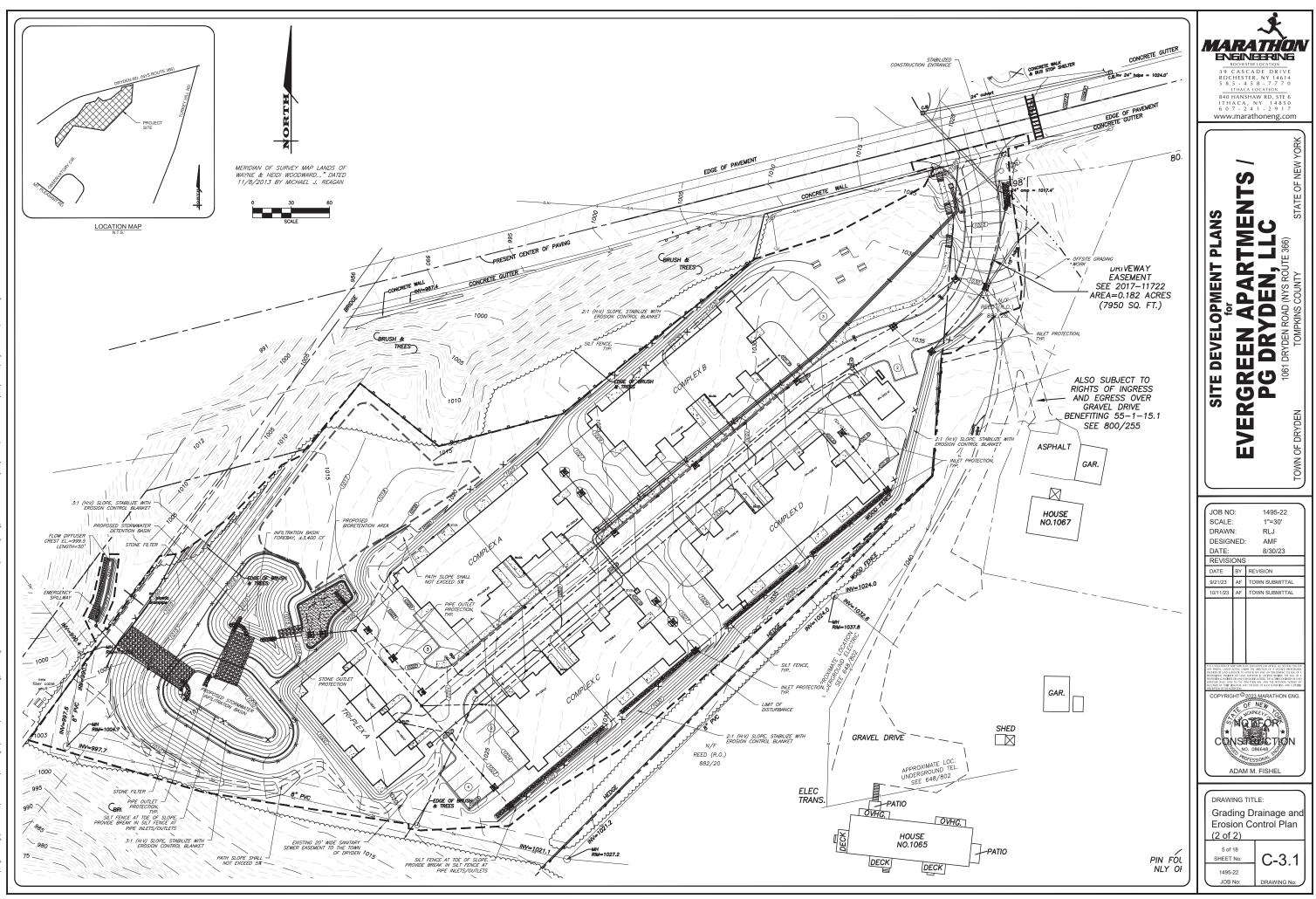

6. STAGING - AS DEFINED BY THE CONTRACT DOCUMENTS THE CONTRACTOR SHALL CONSTRUCT A SECURE STAGING

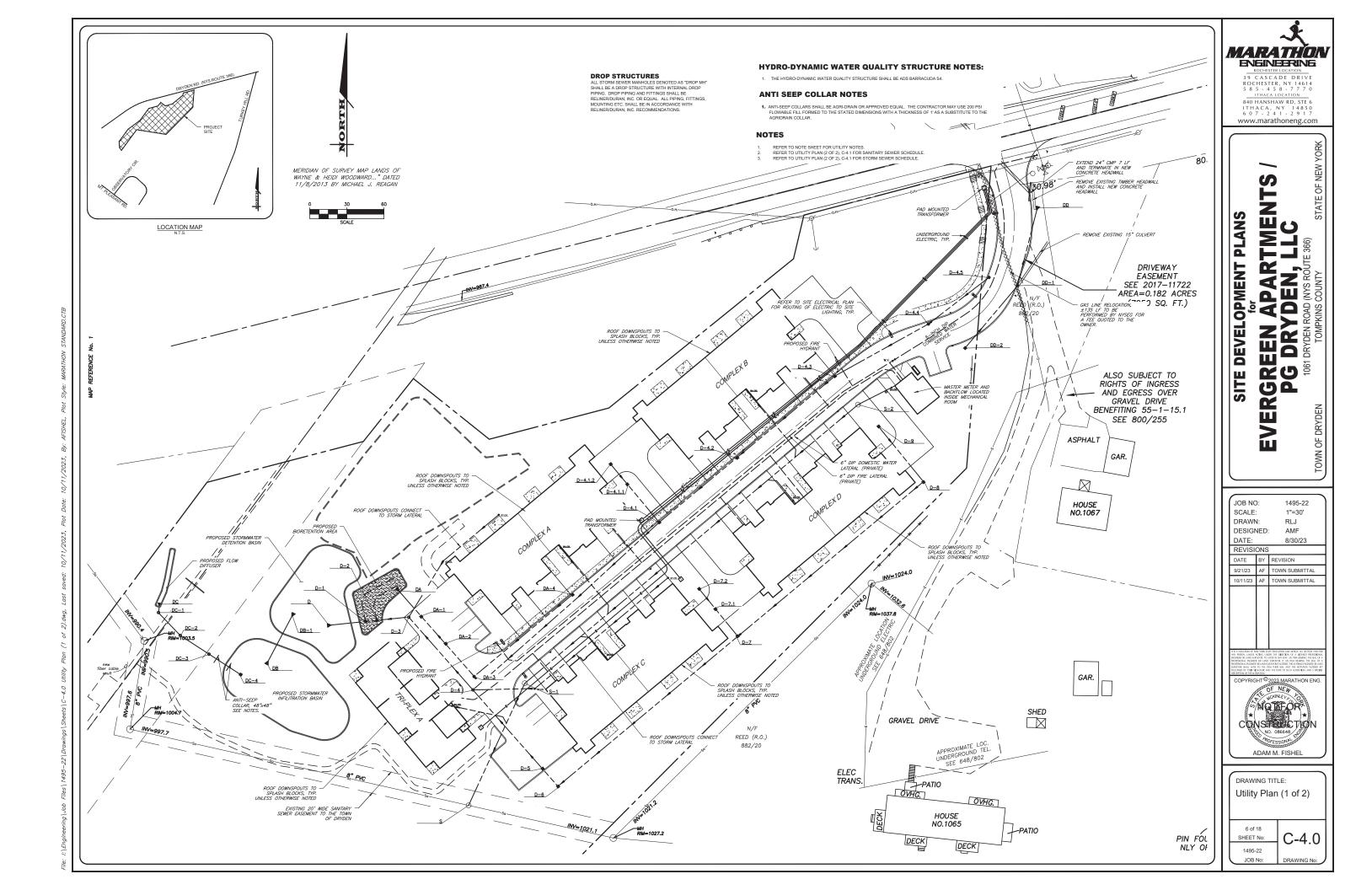
AREA FOR STORAGE OF EQUIPMENT, MATERIALS, EMPLOYEE PARKING AND OFFICE SPACE. IF THE AREAMETHOD IS NOT SPECIFICALLY DEFINED ON THE DOCUMENTS THEN IT SHALL BE COORDINATED WITH THE OWNER'S ON-SITE REPRESENTATIVE.

COORDINATION - THE CONTE


ORDINATION - THE CONTRACTOR SHALL COORDINATE INSTALLATION OF UTILITY WOR JTIES (I.E. GAS, ELECTRIC, LIGHTING, COMMUNICATIONS) TO AVOID DOTE:






NOTES

1. REFER TO NOTE SHEET, C-1.0 FOR SITE RELATED NOTES.

STRUCTURE ID	STRUCT
S-2	PROPOS
S-2 TO S-1	MAN
S-1	PROPOS
S-1 TO S	MAN
S	PROPOS
	DOG
-	

NOTES:

DRAINAGE SCHEDULE (D)

30x30 CB TG	D-9	D-8				
TG		0-0				
	1031.00					
	1026.94	1025.80	12	HDPE	57	2.00%
30x30 CB		D-7				
	1031.85					
	1025.80	1021.88	12	PERF. HDPE	196	2.00%
30x30 CB		D-7.1				
	1025.90					
	1021.88	1021.68	12	HDPE	20	1.00%
	D-7.1	D-7				
	1025.90					
	1021.68	1021.40	12	PERF. HDPE	28	1.00%
	D-7	D-6				
	1025.90					
	1021.40	1017.64	12	PERF. HDPE	188	2.00%
30x30 CB		D-5				
	1023.90					
	1017.64	1016.74	15	HDPE	18	5.00%
	D-5	D-4				
	1023.70					
	1016.74	1012.54	15	HDPE	84	5.00%
	D-4.5	D-4.4				
	1030.10					
INV=	1027.05	1025.34	12	HDPE	62	2.75%
	D-4.4	D-4.3				
	1032.00					
	1025.34	1022.95	12	HDPE	87	2.75%
30X30 CB	D-4.3	D-4.2				
	1031.40					
	1022.95	1020.15	12	HDPE	102	2.75%
30X30 CB	D-4.2	D-4.1				
TG	1028.60					
INV=	1020.15	1018.12	15	HDPE	81	2.50%
30X30 CB	D-4.1.2	D-4.1.1				
TG	1025.50					
INV=	1021.22	1020.17	15	HDPE	21	5.00%
30X30 CB	D-4.1.1	D-4.1				
TG	1025.50					
INV=	1020.17	1018.12	15	HDPE	41	5.00%
30X30 CB	D-4.1	D-4				
TG	1026.50					
INV=	1018.12	1012.54	15	HDPE	203	2.75%
MH4	D-4	D-3				
TG	1022.00					
	1012.54	1011.76	18	HDPE	78	1.00%
	D-3	D-2				
TG	1021.90					
	1011.76	1011.50	18	HDPE	26	1.00%
	D-2	D-1				
	1015.50					
	1011.50	1011.41	18	HDPE	9	1.00%
	D-1	D	-			
	1015.50					
		1011 00	10	LIDDE	20	4 400/
	1011.41	1011.00	18	HDPE	28	1.46%

SA	NITARY	SEWER S	CHEDULE			
STRUCTURE TYPE	TOP OF RIM	INVERT OUT	INVERT IN	LENGTH (FT)	PIPE DIA. & MAT'L	SLOPE (%)
PROPOSED 4' DIA. MANHOLE	1032.00	1025.62	1025.72	161	6" PVC.	5.00%
PROPOSED 4' DIA. MANHOLE	1023.40	1017.47	1017.57	109	6" PVC.	3.00%
PROPOSED 4' DIA. DOG HOUSE	1020.80	1014.10	1014.20	-	-	

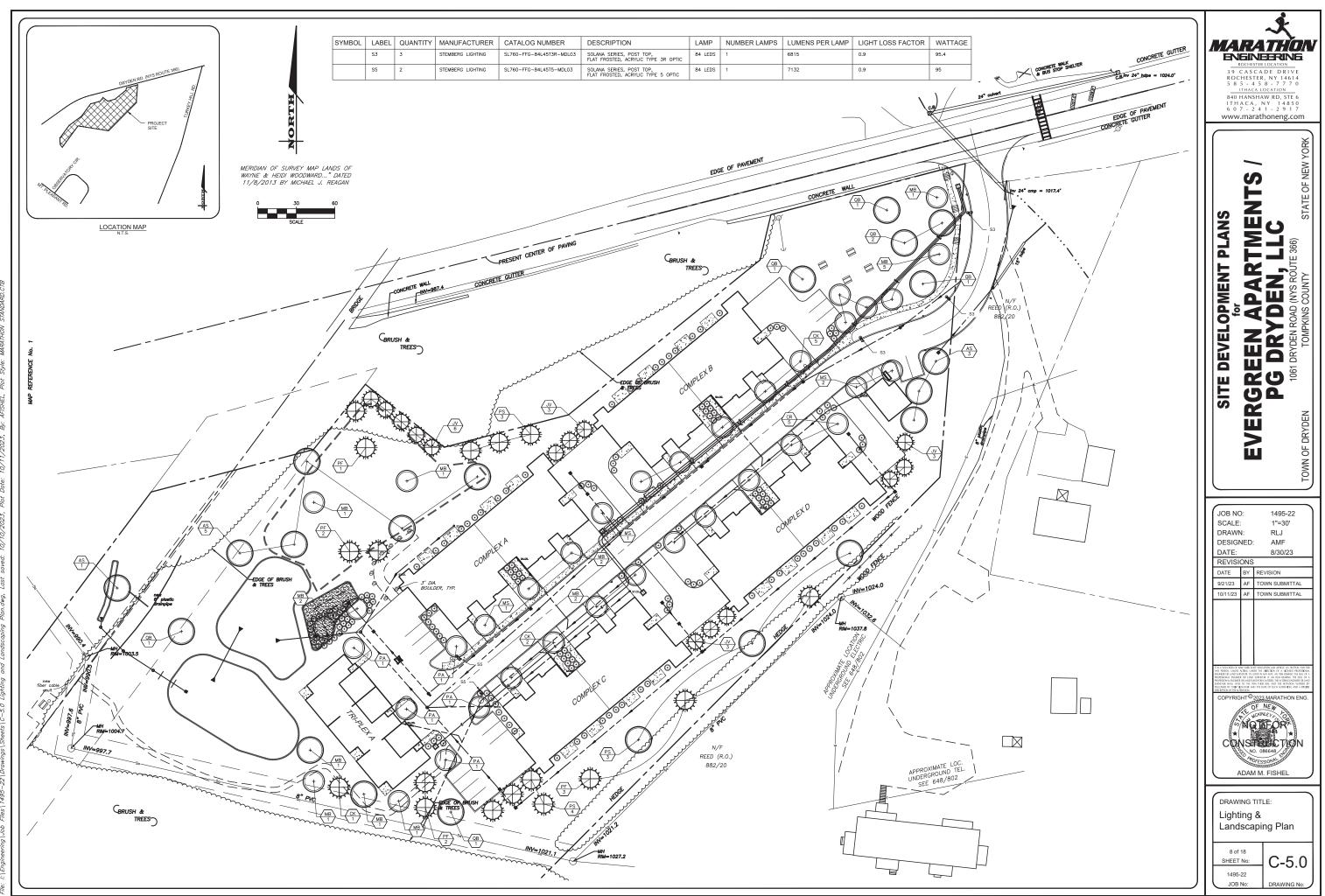
(1) INVERT ELEVATION OF EXISTING SANITARY SEWER SHOWN IS APPROXIMATE. CONTRACTOR TO CONFIRM PRIOR TO THE START OF WORK.

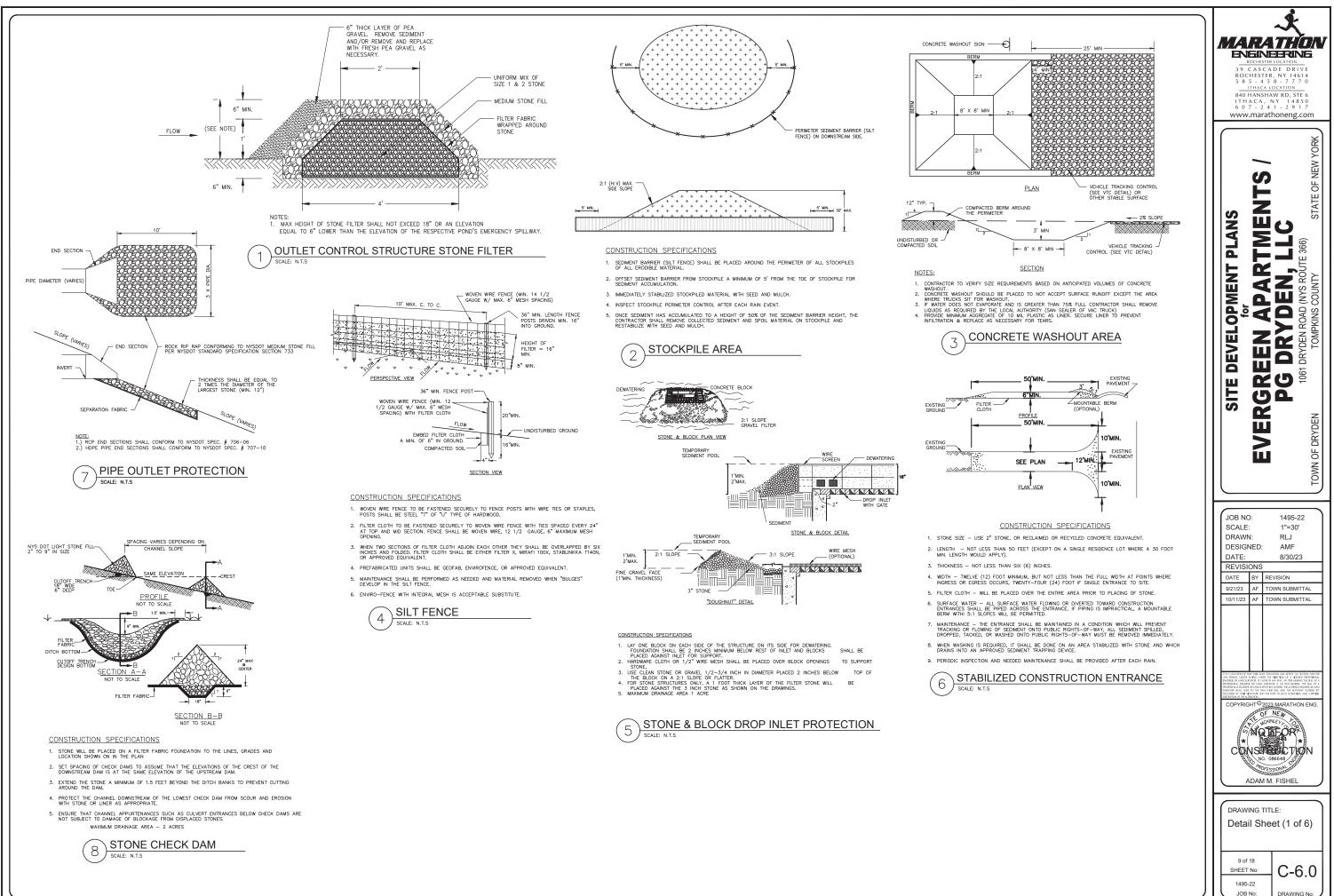
DRAINAGE SCHEDULE (DA)

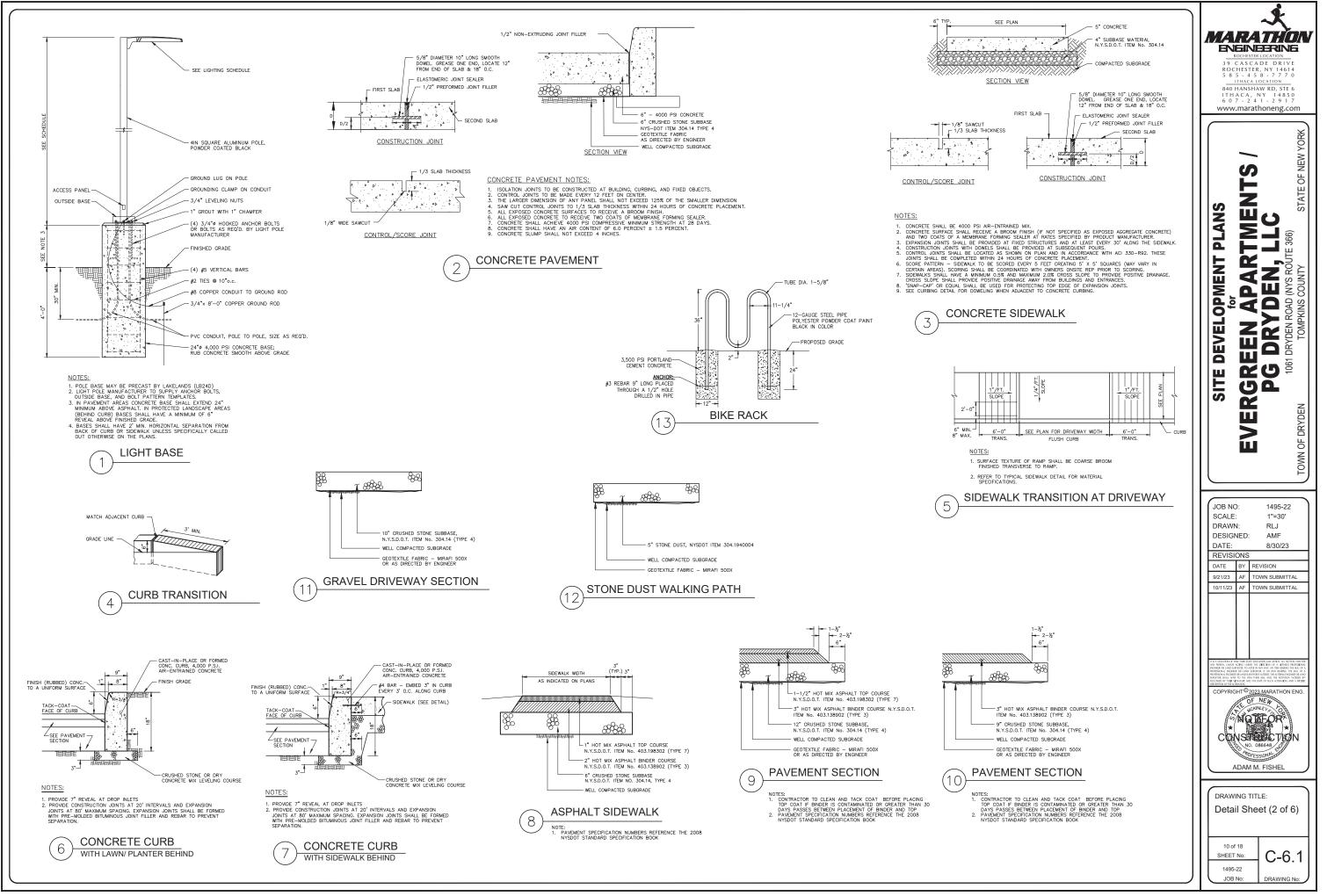
RE DESIGN	ATIONS				
FROM	TO	DIA. (IN)	PIPE MAT'L	LENGTH (I	SLOPE (%
DA-4	DA-3				
1024.1					
1019.07	1018.04	12	HDPE	103	1.00%
DA-3	DA-2				
1021.3					
1018.04	1016.34	18	HDPE	34	5.00%
DA-2	DA-1				
1021.3					
1016.34	1015.78	18	HDPE	28	2.00%
DA-1	DA				
1021.3					
1015.78	1015.00	18	HDPE	26	3.00%
DA					
1015					
	FROM DA-4 1024.1 1019.07 DA-3 1021.3 1018.04 DA-2 1021.3 1016.34 DA-1 1021.3 1015.78 DA	DA-4 DA-3 1024.1 1019.07 1018.04 1021.3 DA-2 1021.3 1018.04 1016.34 1016.34 DA-2 DA-1 1021.3 1018.04 1015.78 1015.78 1021.3 1015.78 1015.00 DA-1 DA DA 1021.3 1015.78 1015.00 DA DA DA	FROM TO DIA. (IN) DA-4 DA-3 DA-1 1024.1 1019.07 1018.04 12 DA-3 DA-2 DA-2 DA-1 1018.04 1016.34 18 DA-2 DA-2 DA-1 DA-1 DA-1 1021.3 1015.78 18 DA-1 DA-1 DA 1021.3 DA-1 D21.3 D15.78 18 DA-1 D21.3 DA D21.3 DA-1 DA-2 DA-1 DA D21.3 D21.3 DA DA DA	FROM TO DIA. (IN) PIPE MAT'L DA.4 DA-3 DA-1 1019.07 1018.04 12 HDPE DA-3 DA-2 1021.3 1018.04 12 HDPE DA-2 DA-3 DA-2 202.13 1018.04 1016.34 18 HDPE DA-2 DA-2 DA-1 1021.3 1012.13 1012.13 1012.13 1021.3 105.70 18 HDPE DA 102.13 1021.3 105.70 18 HDPE DA 104 104 104 104 104 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105	FROM TO DIA. (IN) PIPE MAT'L LENGTH (I DA-4 DA-3 DA-4 1024.1 1010.07 1018.04 12 HDPE 103 DA-2 1021.3 1018.04 12 HDPE 34 DA-2 1021.3 1016.34 18 HDPE 34 DA-2 DA-1 1021.3 1035.76 104 1022.3 105.76 104 1021.3 105.76 104 1021.3 105.76 104 1021.3 105.76 104 105.76 104 105.76 104 105.76 104 <t< td=""></t<>

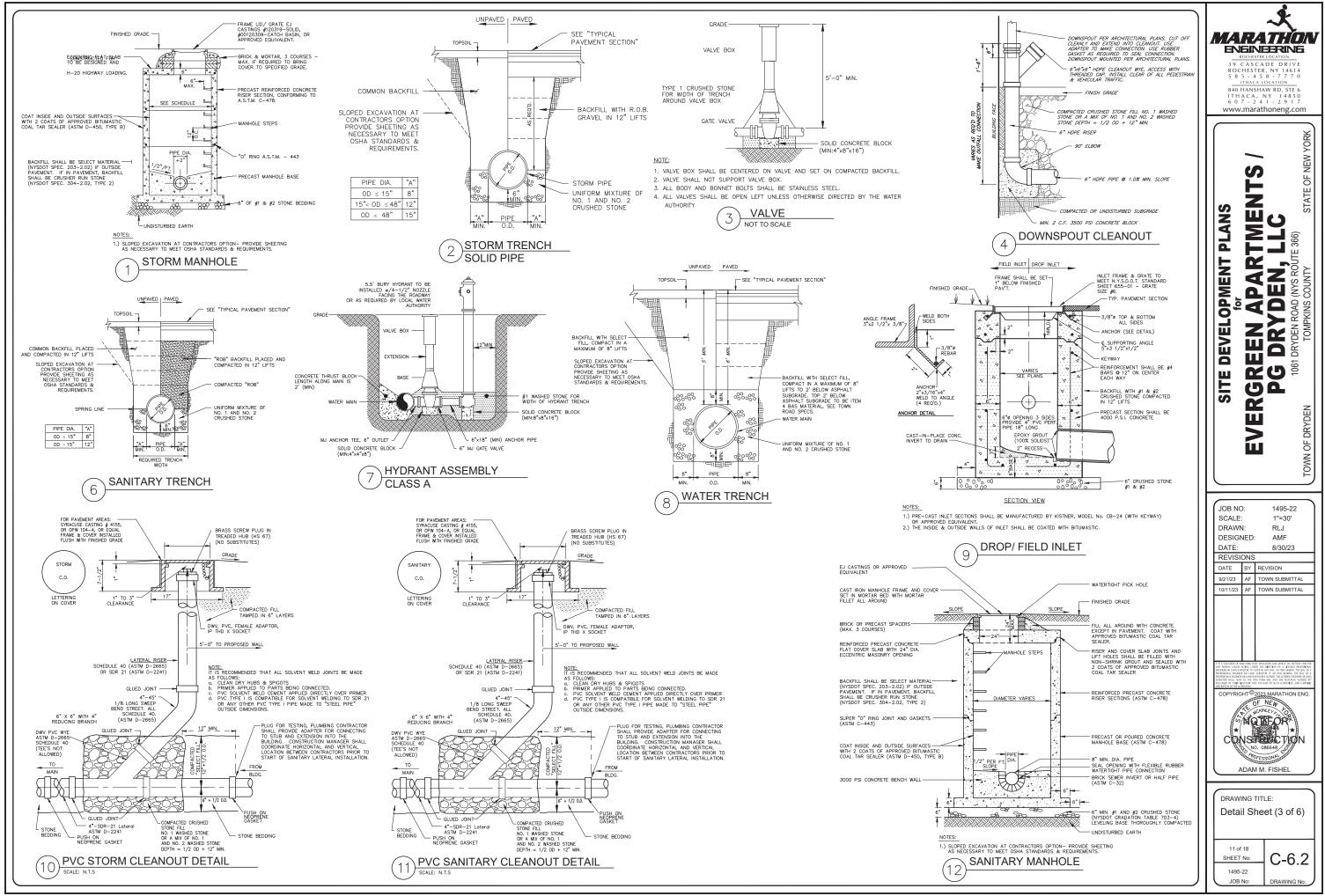
DRAINAGE SCHEDULE (DB)

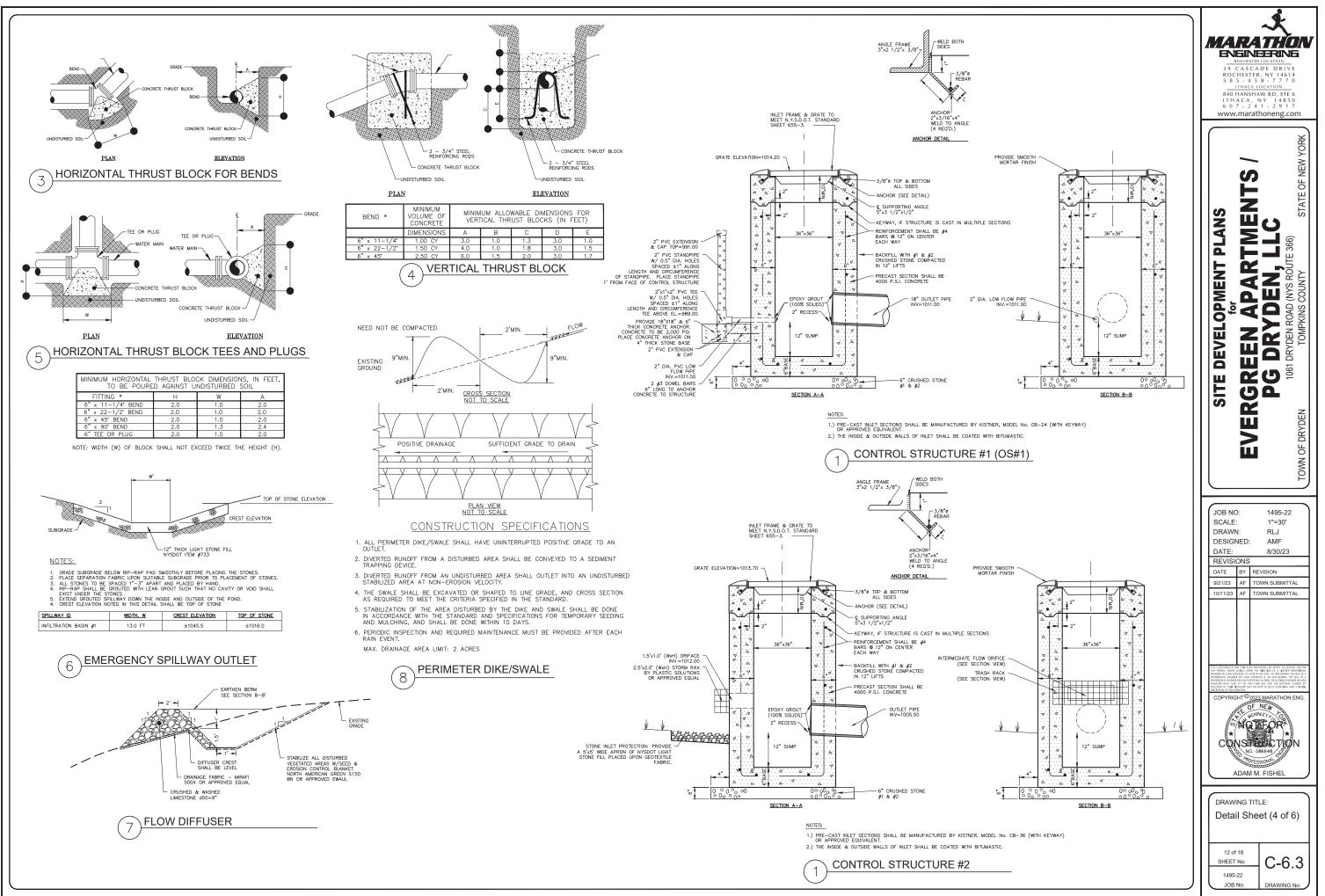
	FROM	TO	DIA. (IN)	PIPE MAT'L	LENGT	H (FSLOPE (%
OCS1	DB-1	DB				
TR	1014.00					
INV=	1010.43	1010.00	18	HDPE	43	1.00%
ES	DB-1					
INV=	1010 00					

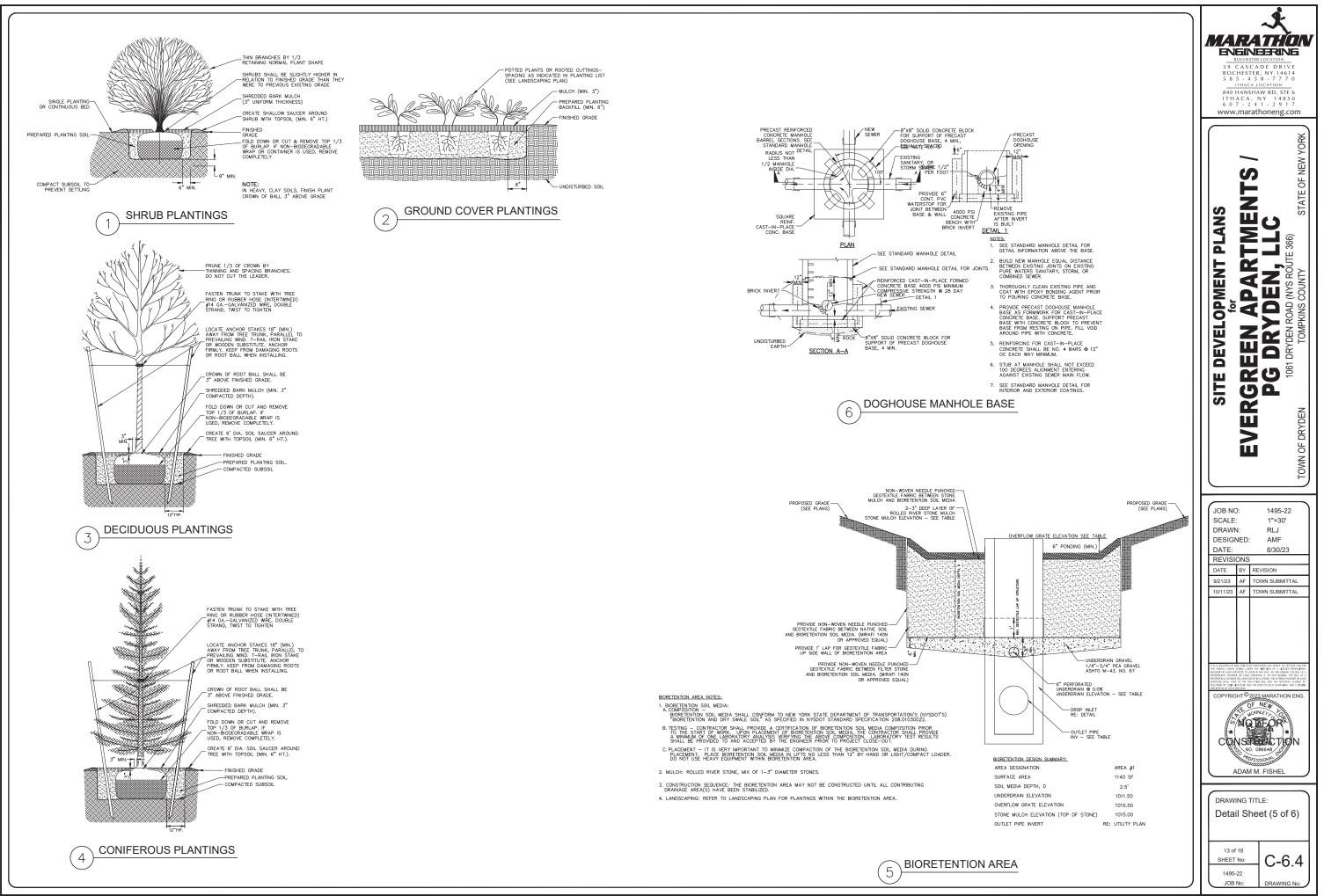

DRAINAGE SCHEDULE (DC)

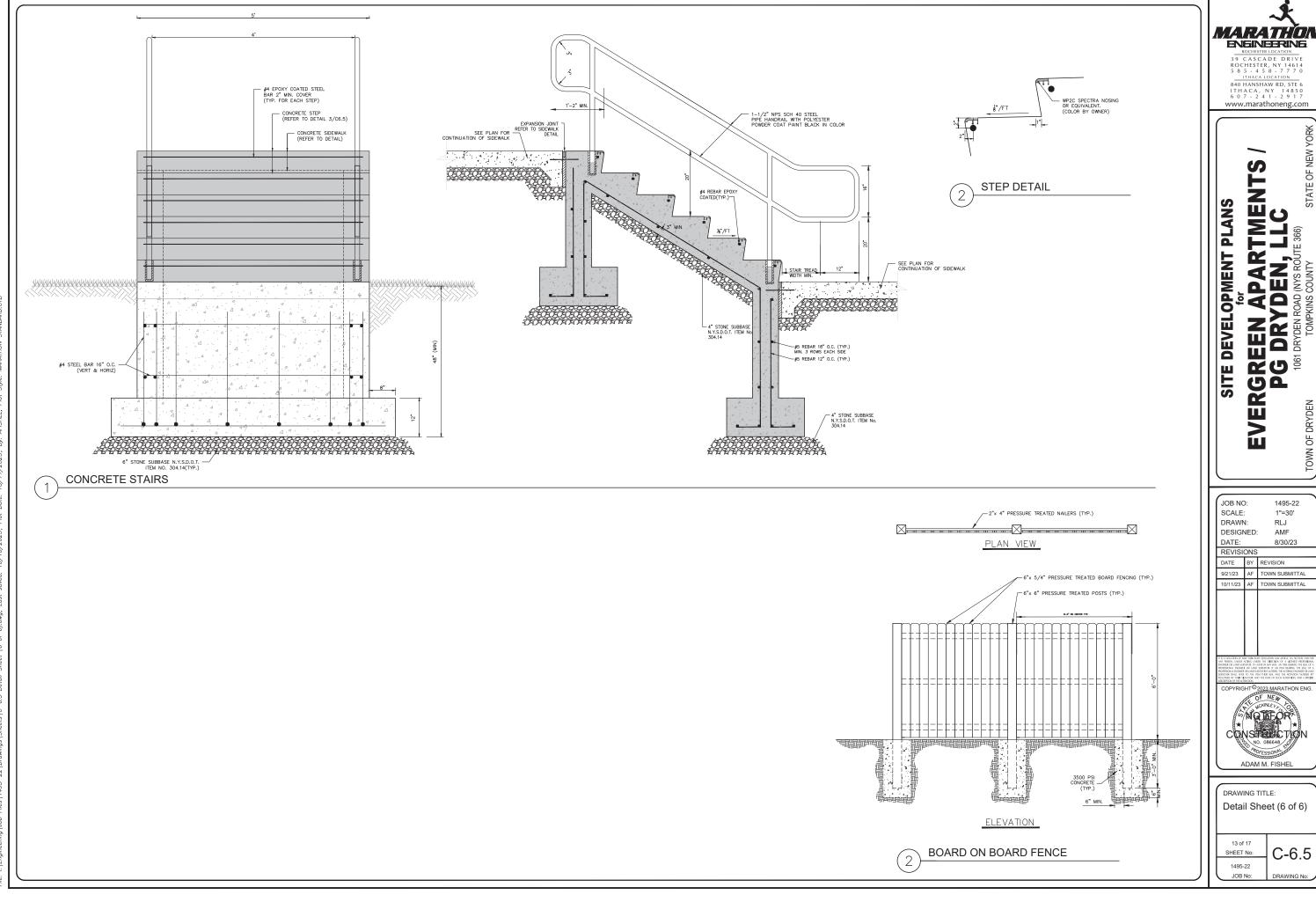

	FROM	TO	DIA. (IN)	PIPE MAT'L	LENGTH	H (F SLOPE (%)
OCS2	DC-4	DC-3				
TR	1010.00					
INV=	1005.40	1004.50	24	PVC	30	3.00%
MH4	DC-3	DC-2				
TR	1015.00					
INV=	999.65	998.81	24	PVC	28	3.00%
MH 4	DC-2	DC-1				
TR	1005.90					
INV=	998.81	998.06	24	PVC	25	3.00%
MH4	DC-1	DC				
TR	1002.00					
INV=	998.06	998.00	24	PVC	5	1.20%
ES	DC					
INV=	998					

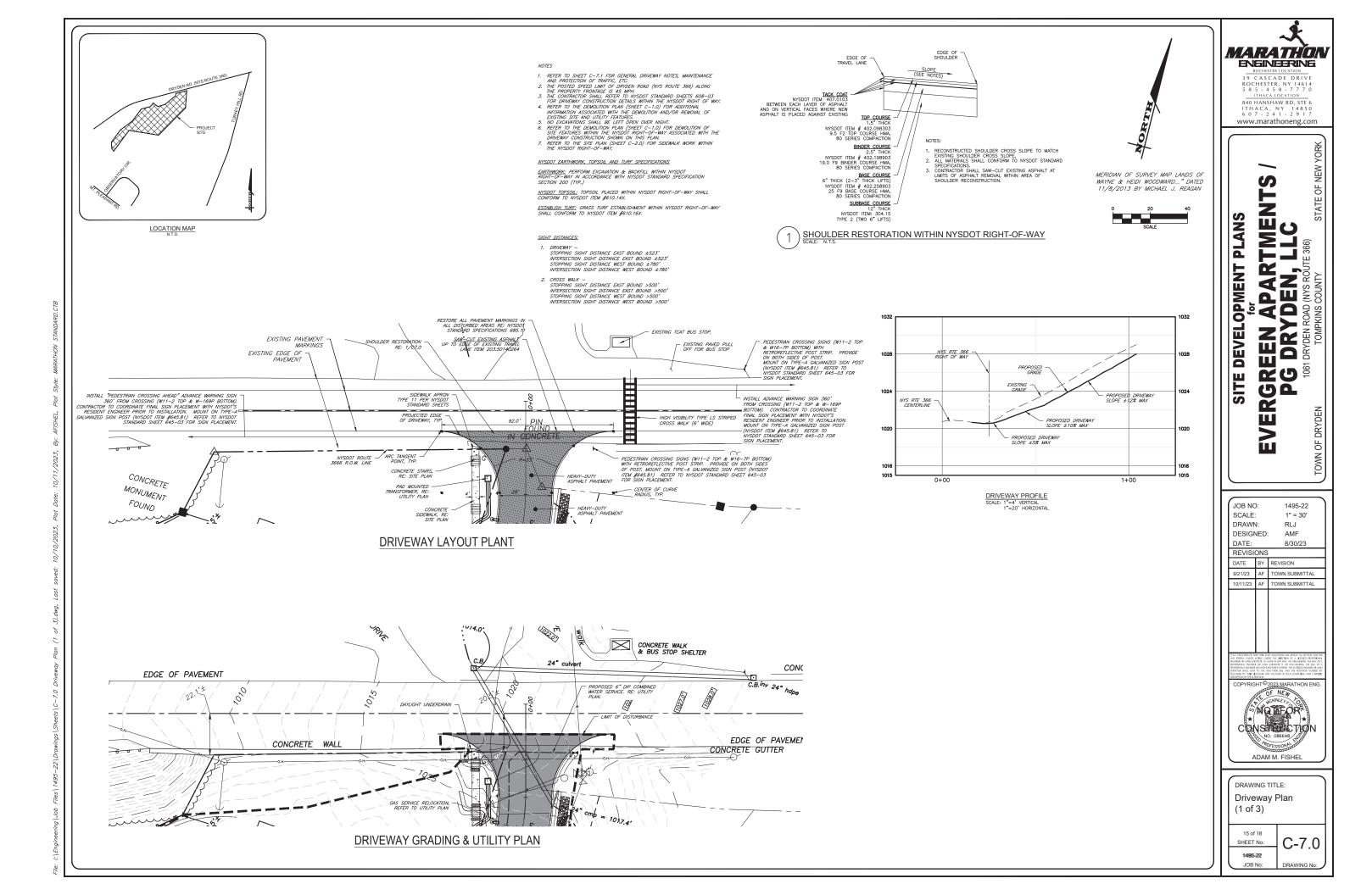

DRAINAGE SCHEDULE (DD)

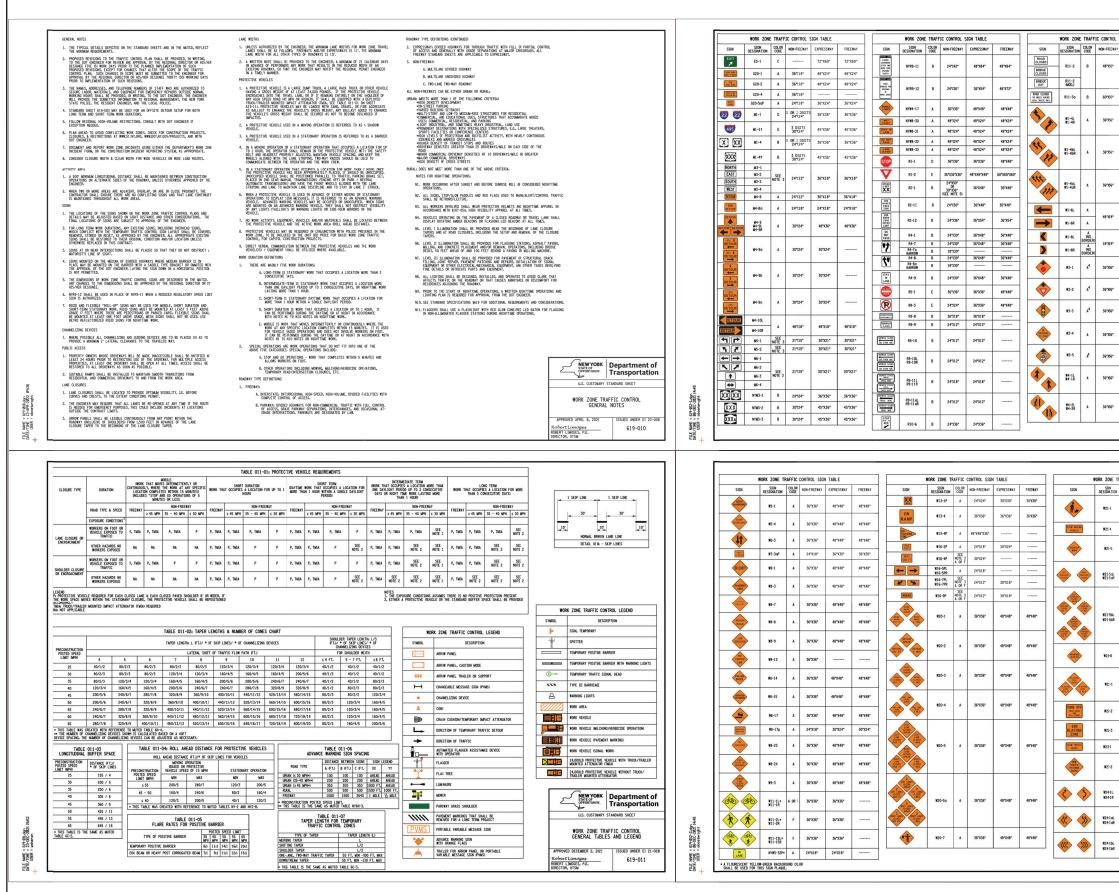

STRUCTU	STRUCTURE DESIGNATIONS							
	FROM	TO	DIA. (IN)	PIPE MAT'L	LENGTH (FT)	SLOPE (%)		
30X30 CB	DD-2	DD-1						
TG	1032.90							
INV=	1029.02	1026.51	15	HDPE	66	3.80%		
INMH 4	DD-1	DD						
TG	1030.20							
INV=	1026.51	1024.00	15	HDPE	66	3.80%		
ES	DD							
TR	1024.00							

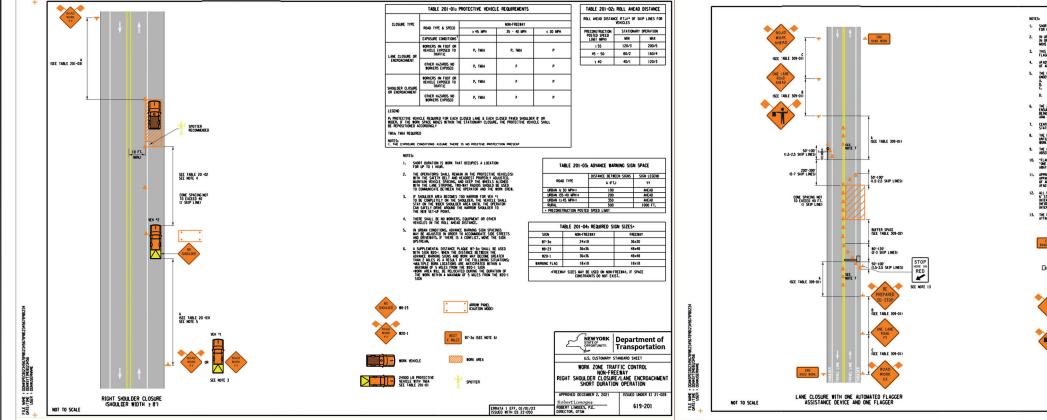












ONTROL S	IGN TA	BLE				WORK ZONE	TRAFF	IC CONTROL	SIGN TABLE	
FREWAY	EXPRE		FRE	EWAY	SIGN	SIGN Designation	COLOR CODE	NON-FREEWAY	EXPRESSWAY	FREEWAY
"930"	48"X	30*	48'	x30*	BLATTE BOEME	NY#23-1	A	36"X36"	45"X48*	48"X48"
830*	60"X	30*			EXIT		6F.12	24"X18"	36"X24"	36"324"
' 36''	48"X	48*	48*	X48*	OPEN EXIT		6F.28 6F.28	48"X36" 48"X36"	48"X36" 48"X36"	48"X36" 48"X36"
"336"	48"X	48*	48'	x48"	CLOSED		- = = =	96. 0.	964 V.	040.07
:736*	48"X	:48*	48*	X48*		CODE		R CODE LEGI DESCRIF BLACK LEGEND ON AN ORANGE	TION	
8724*	60"X	30*	60*	x30*		B		BLACK LEGEND ON A WHITE B WHITE LEGEND ON A GREEN B WHITE LEGEND ON A RED BAC	AND BORDER ACKGROUND	
224	30"X	36*	30*	x36*		D E F		RED LEGEND A ON A WHITE B BLACK LEGEND ON A FLOURES GREEN BACKGR	ND BORDER ACKGROUND AND BORDER CENT YELLOW OUND	
736*	48"X	48*	48*	X48*		c		WHITE LEGEND ON A BLUE AN BACKGROUND	AND BORDER D RED	
5*336*	48"X	48*	48*	X48*	NOTES:		340 m **		π.	
"J36"	48"X	48*	48*	X48*	2. FO	R SIGNAGE NOT	SHOWN O		IT. S REFER TO THE TURN ARROWS, A OUTE OR INTERST MULT.C.D.	
'736'	48"X			X48*	4. MU 80	LTICOLORED SYN RDER ON AN OR	ANCE BA	Posed on Sign (Ckground,	WITH BLACK LEGEN . BE USED WHEN : D.	ID AND
inge.	45"X			X48*		٢	Y	EW YORK	Departn Transpo	ortation
				1		1	us		STANDARD SHEET	
i*356*	48"X	48*	48*	X48*			WORK	ZONE TRA SIGN 1 (SHEET 1	AFFIC CONTR TABLE 1 OF 2)	OL
"356"	48"X	48*	45*	X48*			DECEME	BER 2, 2021	ISSUED UNI	OL Der et 21-028 -012
36°	48"X	48*	48*	X48*		APPROVED RobertL ROBERT LIN DIRECTOR, O	DECEME	BER 2, 2021	ISSUED UNI	DER EI 21-028
36*	48"X	48*	48*	X48*			DECEME	BER 2, 2021	ISSUED UNI	DER EI 21-028
IE TRA	AFFIC (DL SIGN		FREEWAY		DECEME	BER 2, 2021	ISSUED UNI	DER EI 21-028
IE TRA	AFFIC (CONTRO NON-FI	DL SIGN	TABLE	FREEWAY 48"X48"		DECEME	BER 2, 2021	ISSUED UNI	DER EI 21-028
HE TRJ 4 TTON	AFFIC 0 COLOR CODE	NON-FR	NL SIGN	TABLE			DECEME	BER 2, 2021	ISSUED UNI	DER EI 21-028
ONE TRJ	AFFIC O COLOR CODE A	NON-FF 36"	DL SIGN REEWAY K36"	TABLE EXPRESSWAY 48°X48*	48"X45"		DECEME	BER 2, 2021	ISSUED UNI	DER EI 21-028
ONE TRJ INN MATION I-1 I-1 I-5	AFFIC C COLOR CODE A A	CONTRO NON-FF 36" 36"	NL SIGN Reenay K18°	TABLE EXPRESSWAY 48*X48* 48*X24*	48"X48" 48"X24"		DECEME Unogen DOES, f OTSM	52. 2021 55. COLOR COL	155UED UN 619	DER EI 21-028
ZONE TRR. SUN ICONTION 121-1 121-4 121-5 21-5 21-5 21-5 21-5 21-5 21-5 21-	AFFIC C COLOR CODE A A A	CONTRO NON-FF 36" 36" 36"	DL SIGN REEWAY X36° X36°	TABLE EXPRESSWAY 48*X48* 48*X48* 48*X48*	48"X48" 48"X24" 48"X48*		DECEME	COLOR COOL SECTION COLOR COOL REAL REAL REAL REAL REAL REAL REAL REA	ISSUED UNI 619 NE LEGEND	012 012 012 012 002 00 00 00 00 00 00 00 00
2018 TR/ INN 2017 TR/ INN 2017 TR/ ISON 2015 ISON 2015 ISON 2015 ISON 2015 ISON 2015	AFFIC C COLOR A A A A	CONTRR NON-F9 36" 36" 36" 36"	UL SIGN KEEWAY K18* K18* X36* X36*	TABLE ExPRESSARY 487X8* 487X8* 487X8*	48"X48" 48"X48" 48"X48" 48"X48*		DECEMENT MODES, F CODU CODU A B C C D	COLOR COL 2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	E LEGEND ELEGEND ELEGEND ELEGEND ELEGENA EL	HER ET 21-028 -012
ZONE TRJ SIN (SANTON 21-1 21-1 21-4 21-5 21-5 21-5 21-5 21-5 21-5 21-5 21-5	AFFIC COLOR CODE A A A A	2000 TRC NON-F9 36" 36" 36" 36" 36"	UL SIGN REEWAY K18* K18* K18* K18*	TABLE EXPRESSION 647%6* 487%6* 487%6* 487%6*	48"X48" 48"X48" 48"X48" 48"X48" 48"X48"	Robert I BRET I DRET I	CODU CODU CODU A B C C D C C C C C C C C C C C C C C C C	COLOR COL COLOR COL COL COLOR COL COL COL COL COL COL COL COL	E LEGNO 44 44 44 44 44 44 44 44 44 44 44 44 44	HER ET 21-028 -012
2018 TRJ 301 TON 211-1 21-5 21-5 15-6 15-6 15-6 15-6 15-6 21-8 22-1	AFFIC C COLOR A A A A A A	CONTR(NON-FF 36" 36" 36" 36" 36" 36" 36"	UL SIGN REEWAY RIG* RIG* RIG* RIG* RIG* RIG* RIG* RIG*	TABLE DPRESSART 48724* 48724* 48724* 48724* 48724*	48724* 48724* 48724* 48724* 487248* 487248*	ROPETL BREFT IN DRECTOR	DECEME (Ansorption) DOFES, 1 OTSM CODES, 1	COLOR COL 2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	ISSED IM 619 FE LEEDO 519 ISSED IM 619 ISSED IM 619 <td>660 E1 21-028 -012</td>	660 E1 21-028 -012
ONE TR. IM MATION IIII IIII IIIIIIIIIIIIIIIIIIIIIIIII	AFFIC 0 COOP A A A A A A A A A A A A A A	CONTRR NON-FF 36" 36" 36" 36" 36" 36" 36" 42"	L SIGN EEWAY (18* (18* (18* (18* (18* (18* (18* (18*	TABLE E39855347 49748* 49744* 49744* 49744* 49744* 49744* 49744* 49744* 49744* 49744* 49744* 49744* 49744* 49744* 49744*	48748* 48724* 48724* 48748* 48748* 48748* 48748* 48748* 48748* 48748* 48748* 42732*	ROPETL BREFT IN DRECTOR	DECEME (Ansorption) DOFES, 1 DOFES, 1 DOFE	COLOR COL 2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	ISSOD IM 615 ELECON 515 ISSOD IM 619	660 E1 21-028 -012
ONE TRUE IN MATTON 1-1 1-1 1-1 21-5 1-5041	AFFIC COCOR A A A A A A A A	CONTRR NON-F3 36" 36" 36" 36" 36" 36" 42" 42" 42" 48"	IL SIGN REEWAY KIG* KIG* KIG* KIG* KIG*	TABLE EXPESSION EXPESSION 487X48* 487X48* 487X48* 487X48* 487X48* 487X48* 487X48* 487X48* 487X48*	48724* 48724* 48724* 48724* 48724* 48724* 48724* 48724* 48724* 48724* 48724* 48724* 48724*	ROPETL BREFT IN DRECTOR	DECEME (Ansorption) DOFES, 1 DOFES, 1 DOFE	COLOR COL 2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	ISSED IM 619 FE LEEDO 519 ISSED IM 619 ISSED IM 619 <td>660 E1 21-028 -012</td>	660 E1 21-028 -012
ONE TRUE INN ANTON I-1 I-1 I-4 I-4 I-4 I-4 I-4 I-4 I-4 I-4 I-4 I-4	AFFIC of Coole A A A A A A A A A A A A A A A A	CONTRR NON-FF 36* 36* 36* 36* 36* 36* 36* 36* 36* 36*	XIL SIGN EEWAY XIS6" XIS6" XIS6" XIS6" XIS6" XIS6" XIS6" XIS6" XIS6" XIS6"	TABLE DP9E55847 48724° 48724° 48724° 48724° 48724° 48734° 48734° 48734° 48734° 48734° 48734° 48734° 48734° 48734°	48724° 48724° 48724° 48724° 48724° 48724° 48724° 48724° 48724°	ROBELT BURGET LA DIRECTOR	CODU CODU CODU CODU CODU CODU CODU CODU	COLOR COL 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ISSED IM 619 ISSED IM 619 <td>60 E1 21-020 -012</td>	60 E1 21-020 -012
2016 TRANS	AFFIC C CCCOT A A A A A A A A A A A A A A	CONTR(NON-F) 36" 36" 36" 36" 36" 42" 42" 42" 42" 42" 42" 42" 42"	L SIGN EEWAY X36* X36* X36* X36* X36* X36* X36* X36*	TABLE DP9E55847 48724° 48724° 48724° 48724° 48724° 48734° 48734° 48734° 48734° 48734° 48734° 48734° 48734° 48734° 48734° 48734° 48734° 48734°	48724° 48724° 48724° 48724° 48724° 48724° 48724° 48724° 48724° 48724°	ROPETL BREFT IN DRECTOR	CODE CODE CODE CODE CODE CODE CODE CODE	COLOR COO COLOR COO COLOR COO COLOR COO COO COLOR COO COO COO COO COO COO COO COO COO COO	ELECTION AND AND AND AND AND AND AND AND AND AN	ARE ET 21-028 -012 -012 -012 -012 -012 -012 -012 -012
2204E TRL ZONE TRL SUM TRL R21-5 21.504 R21-7 21.504 R21-7 21.504 R21-7 21.514	AFFIC COLOR A A A A A A A A A A A A A A A A A A A	CONTRR NON-FF 36" 36" 36" 36" 36" 36" 42" 42" 42" 48" 56" 36" 36" 36"	L SIGN EEEMAY X36" X36" X36" X36" X36" X36" X36" X36"	TABLE EX9855347 41724° 41724° 41724° 41724° 41724° 41724° 41724° 41724° 41724° 41724° 41724° 41724°	487.48° 487.24° 487.24° 487.24° 487.48° 487.48° 487.48° 487.48° 487.48° 487.24° 487.24° 487.24° 487.24°	ROPETL BREFT IN DREFT IN DREFT IN DREFT IN REFT IN REF	CODUCES I CODUCES I CODUCE	Солов соор Соор	ELECTION ACTION ACTIONA ACTIO	ARE ET 21-028 -012 -012 -012 -012 -012 -012 -012 -012

1. WORK ZONE TRAFFIC CONTROL REVISIONS

PROPOSED REVISIONS TO THE WORK ZONE TRAFFIC CONTROL (WZTC) PLAN OR MODIFICATIONS TO THE 619 STANDARD SHEETS SUBMITED TO THE ENGINEER FOR THE REVIEW AND APPROVAL BY THE REGIONAL TRAFFIC ENGINEER PROR TO THE PLANED MILPLENETATION OF SUCH REVISIONS OR MODIFICATIONS. THE CONTRACTOR SHULL NOT MILPLENET THE PROPOSED REVISIONS D S WITHOUT NUTRION OF SUCH REVISIONS OR MODIFICA NL FROM THE REGIONAL TRAFFIC ENGINEER. FIONS SHALL BE USED, TYPICALS CAN BE I

TRAVEL LANE WIDTHS IN WORK ZONES

NEEDE KOT SHOWN NI HE WITTE PLANE ON OTHERWISE AUTHORIZED BY INFO DOT (ON THE EXPLICIENT TAKEL LAKE WOTHS IN WORK ZORS SHALL BE AMMINING OF TO ON FREENVIS, RAMES, EXPRESSIONS AND MULTI-LAKE CONVENTIONAL ROADWAYS AND TO FT ON ALL OTHER CONVENTIONAL ROADWAYS.

3. DAILY LANE, RAMP AND SHOULDER CLOSURE RESTRICTIONS

WORK ZONES SHALL BE RESTRICTED TO ONE SIDE OF THE ROADWAY AT A TIME IN EACH DIRECTION ON DIVIDED ROADWAYS, UNLESS APPROVED BY THE ENGINEER. THE CONTRACTOR SHALL SCHEDULE WORK SO THAT ALL TRAVEL LANES AND RAMPS IN EACH DIRECTION ARE OPEN WHEN THE CONTRACTOR'S OPERATIONS ARE CLOSED DOWN OR SUBSTANTIALLY CLOSED DOWN.

DAILY CLOSURES MAY OCCUR OFF OF LONG-TERM CLOSURES AND SHALL BE SUBJECT TO DAILY CLOSURE RESTRICTIONS, WORK ZONES SHALL BE RESTRICTED TO ONE SIDE OF THE ROADWAY AT A TIME ON UNDIVIDED HIGHWAYS.

4. FLAGGING OPERATIONS

WHEN A PRESTRIAN APPROACHES A FUGGES SUTION, THE FLACEE SMULL STOP TOATIC AND DIRECT THE PRESTRIANT TO A SME ROTE: MICHOID THE WORK AREA. LANGERS SMULL CORDINATE THE ALBONG OF THE WORK ZOART OT BENERVE PRESTRIANS AND SMELT PROCED THROUGH THE AREA. IF THERE IS MORE THAN THE DOCASIONAL PEDESTRIAN WITHIN THE PROJECT LIMITS, REFER TO THE STE SPECIFIC PRESTRIAN WICH OF AND

5. HOLIDAY CLOSURE RESTRICTIONS

DAILY LANE, RAMP AND SHOULDER CLOSURES SHALL NOT BE PERMITTED ON DATES LISTED BELOW DURING THE FOLLOWING HOLIDAY PERIODS.

6:00 AM FRIDAY, MAY 27, 2022 THRU 6:00 AM TUESDAY, MAY 31, 2022 - (MEMORIAL DAY HOLIDAY)

6:00 AM FRIDAY, JULY 1, 2022 THRU 6:00 AM TUESDAY, JULY 5, 2022 - (JULY 4TH HOLIDAY) 6:00 AM FRIDAY, SEPTEMBER 2, 2022 THRU 6:00 AM TUESDAY, SEPTEMBER 6, 2022 - (LABOR DAY HOLDAY) 6:00 AM WEDNESDAY, NOVEMBER 23, 2022 THRU 6:00 AM MONDAY, NOVEMBER 28, 2022 - (THANKSGNING HOLDAY) 6:00 AM FRIDAY, DECEMBER 23, 2022 THRU 6:00 AM TUESDAY, DECEMBER 27, 2022 - (CHRISTMAS HOLIDAY) 6:00 AM FRIDAY, DECEMBER 30, 2022 THRU 6:00 AM TUESDAY, JANUARY 3, 2023 - (NEW YEAR'S HOLIDAY)

6. NOTIFICATION REQUIREMENTS

REGION 3 HAS A WORK ZONE TRAFFIC CONTROL (WZTC) NOTIFICATION POLICY WHICH REQUIRES ENGINEERS TO NOTIFY THE REGION TRANSPORTATION MANAGEMENT CENTER (RTMC) PROR TO ALLOWING A CONTRACTOR TO MIREMENT WORK ZONE TRAFFIC CONTROL ACTIVITIES WITHIN THE HIGHWARY REGIOT OF WAX. YORK ZONE NOTIFICATION IS REQUIRED FOR THE FOLLOWING:

FREEWAYS AND EXPRESSWAYS: ALL LANE, SHOULDER, ROAD, RAMP OR BRIDGE CLOSURES. (THIS INCLUDES MOBILE OPERATIONS WHICH OCCUPY THE LANES OR SHOULDERS)

ALL OTHER STATE HIGHWAYS: ALL LANE CLOSURES WHOSE DURATION WILL BE GREATER THAN 2 HOURS AND ALL ROAD/BRIDGE CLOSURES THE CONTRACTOR SHALL REPORT PROPOSED WZTC ACTIVITIES NOTED ABOVE TO THE ENGINEER BY 8:00 AM OF THE BUSINESS WEEK DAY (LE: MONDAY THROUGH FRIDAY EXCLUDING HOLDAYS) PRECEDING THE PROPOSED WZTC ACTIVITY, FALLIRE TO DO SO WILL RESULT IN DISAPROVAL TO PERFORM THE UNREPORTED WZTC ACTIVITY UNTIL THE ABOVE NOTIFICATIONS REQUIREMENTS ARE SATISFIED. NO PLANNED WZTC ACTIVITY SHALL BE IMPLEMENTED WITHOUT FIRST RECEIVING CLEARANCE FROM THE RTMC.

7. VEHICLE RESTRICTIONS

THE CONTRACTOR SHALL REPORT ANY RESTRICTION (AS DEFINED BELOW) ON HIGHWAYS, RAMPS, OR BRIDGES AT LEAST SX (6) BUSINESS WEEKONS IN ADVANCE OF THE RESTRICTION, SX (6) DAYS LEAD THE IS NECESSARY TO PROVIDE THE FIRM ADEQUATE THE TO PREVAN ISSUMCE OF SPECUL, MULTURE OFFINIST THAT MOULD FORTISE VENICES OVER THE RESTRICTED SECTION OF THIS CONTRMCT.

Ladomice to server, memory realisits into modo moute overside temperas over in relationed believe or into continue RESTRICTIONS SHUL BE DEFINED AS NO. 64 MORE OF THE FOLLOWING: 1: CONFIDETE CASURE OF A HIGHWAY, RAWF OB BRIDGE. 2: SUFFALETION OF BAMEERS OF CHARACTERISE OF THE FOLLOWING: 3: SUFFALE DRIVING SUFFACES OF LESS THAN 16 FEET IN WORK. 3: SUFFALE DRIVING SUFFACES OF LESS THAN 16 FEET IN WORK. 4: AVAILABLE LEVING LEPANCE AND FEH INGINARY. LISS THAN 14 FEET IN HEIGHT. 5: WORK WOULD LIMT VEHICLE LEVITH (LE: TURNING ABULTY) 5: WORK WOULD LIMT VEHICLE LEVITH (LE: TURNING ABULTY)

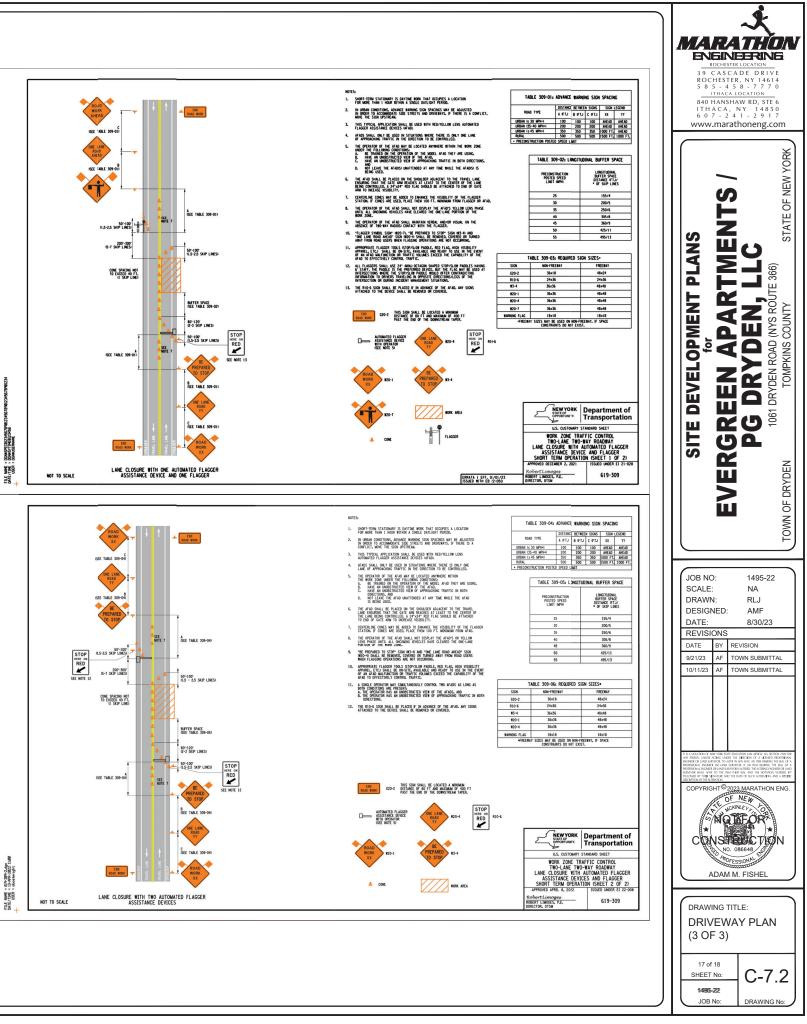
THE CONTRACTOR SHALL ALSO GIVE VERBAL NOTIFICATION AT LEAST SEVEN (7) BUSINESS DAYS (I.E. MONDAY THROUGH FRIDAY EXCLUDING HOUDAYS) PRIOR TO AND AT THE END OF A RESTRICTION ON ANY ROADWAY TO THE:

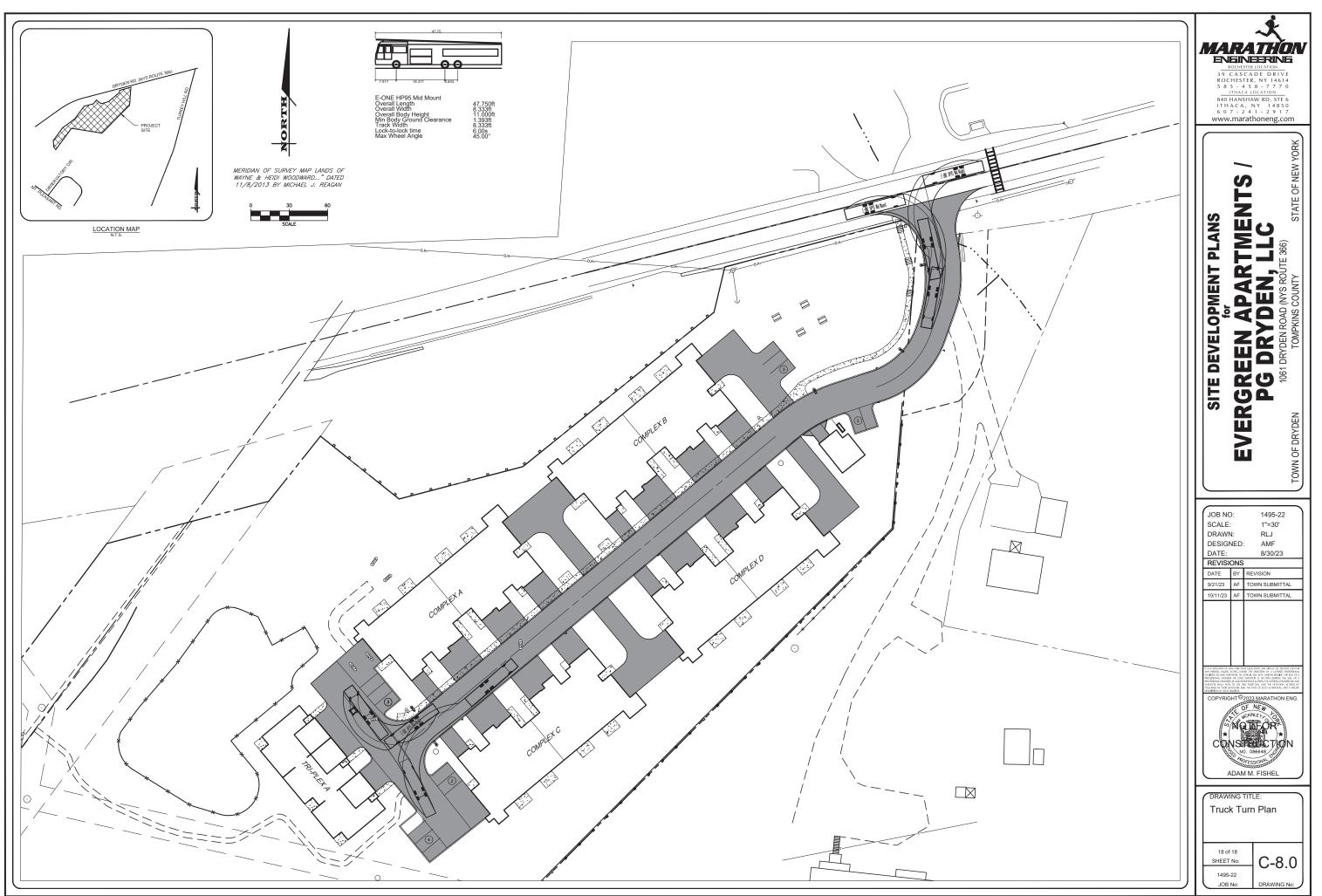
TOMPKINS COUNTY: EMERGENCY CONTROL CENTER (607) 273-7288 8. ACCESS

THE CONTRACTOR SHALL ENSURE THAT ACTIVE LANES OF TRAFFIC ON FREEWAYS ARE NOT CROSSED BY PEDESTRIAN WORKERS. FOR ALL

OTHER HIGHWAYS, THE CONTRACTOR SHALL ENSURE THAT PEDESTRIAN WORKERS CROSS ACTIVE LANES OF TRAFFIC ONLY AT PROPERLY MARKED OR UMMARKED CROSSWALKS AND/OR DEDICATED PEDESTRIAN WALKWYS. IT IS REQUIRED THAT THE PROJECT SAFETY AND HEALTH PLAN ADDRESS ACCESS TO EACH WORK AND STAGING AREA.

CHANNELIZING DEVICE SPACING (CENTER TO CENTER) SHALL BE 40' MAXIMUM FOR POSTED SPEED LIMITS 40 MPH OR GREATER AND 20' MAXIMUM FOR POSTED SPEED LIMITS 35 MPH OR LESS.


STANDARD CONES AND TUBULAR MARKERS SHALL NOT BE USED FOR CHANNELIZATION AND DELINEATION DURING THE HOURS OF DARKNESS, WHICH IS DEFINED AS THE PERIOD BETWEEN SUNSET AND SUNRISE.


11. NON-PAYMENT

9. SIGNS

THE CONTRACTOR'S FAILURE TO COMPLY WITH THE REQUIREMENTS AS STATED ABOVE WILL BE CONSIDERED UNSATISFACTORY TEMPORAR WORK ZONE TRAFFIC CONTROL. PAYMENT WILL BE WITHFELD FOR THE VARIOUS CONTRACT ITEMS WHICH CONTRAL WORK ZONE TRAFFIC COMPLY WILL COMPLY WITH THE STATE STATE OF COMPLY WILL COMPLY WILL BE STATE STATE STATE OF COMPLY WILL BE CONSIDERED UNSATISFACTORY TEMPORAR

619-389-2.don 13-4PR-2822 1

Appendix C

NOI, NOI Acknowledgement Letter, & NOT

NOI for coverage under Stormwater General Permit for Construction Activity

version 1.37

(Submission #: HPS-A8WD-GM4C7, version 1)

Details

Originally Started By ADAM FISHEL

Alternate Identifier Evergreen Apartments - 1061 Dryden Road

Submission ID HPS-A8WD-GM4C7

Submission Reason New

Status Draft

Form Input

Owner/Operator Information

Owner/Operator Name (Company/Private Owner/Municipality/Agency/Institution, etc.) PG Dryden, LLC

Owner/Operator Contact Person Last Name (NOT CONSULTANT) Crilly

Owner/Operator Contact Person First Name Tim

Owner/Operator Mailing Address 46 Prince Street

City Rochester

State New York 14607

Phone (585) 732-4086

Email tcrilly@parkgrovellc.com

Federal Tax ID

NONE PROVIDED

If the owner/operator is an organization, provide the Federal Tax ID number, or Employer Identification Number (EIN), in the format xx-xxxxxxx. If the owner/operator is an individual and not an organization, enter "Not Applicable" or "N/A" and do not provide the individual's social security number.

Project Location

Project/Site Name Evergreen Apartments - 1061 Dryden Road

Street Address (Not P.O. Box) 1061 Dryden Road

Side of Street South

City/Town/Village (THAT ISSUES BUILDING PERMIT) Dryden

State NY

Zip 14850

DEC Region 3

The DEC Region must be provided. Please use the NYSDEC Stormwater Interactive Map (https://gisservices.dec.ny.gov/gis/stormwater/) to confirm which DEC Region this site is located in. To view the DEC Regions, click on "Other Useful Reference Layers" on the left side of the map, then click on "DEC Administrative Boundary." Zoom out as needed to see the Region boundaries.

For projects that span multiple Regions, please select a primary Region and then provide the additional Regions as a note in Question 39.

County TOMPKINS

Name of Nearest Cross Street Turkey Hill Road

Distance to Nearest Cross Street (Feet) 940

Project In Relation to Cross Street West

Tax Map Numbers Section-Block-Parcel 55.-1-16

Tax Map Numbers

NONE PROVIDED

If the project does not have tax map numbers (e.g. linear projects), enter "Not Applicable" or "N/A".

1. Coordinates

Provide the Geographic Coordinates for the project site. The two methods are: - Navigate to the project location on the map (below) and click to place a marker and obtain the XY coordinates.

- The "Find Me" button will provide the lat/long for the person filling out this form. Then pan the map to the correct location and click the map to place a marker and obtain the XY coordinates.

Navigate to your location and click on the map to get the X,Y coordinates 42.45842773288241,-76.4309192783438

Project Details

2. What is the nature of this project?

Redevelopment with increase in impervious area

For the purposes of this eNOI, "New Construction" refers to any project that does not involve the disturbance of existing impervious area (i.e. 0 acres). If existing impervious area will be disturbed on the project site, it is considered redevelopment with either increase in impervious area or no increase in impervious area.

3. Select the predominant land use for both pre and post development conditions.

Pre-Development Existing Landuse

Pasture/Open Land

Post-Development Future Land Use Town Home Residential

3a. If Single Family Subdivision was selected in question 3, enter the number of subdivision lots. NONE PROVIDED

4. In accordance with the larger common plan of development or sale, enter the total project site acreage, the acreage to be disturbed and the future impervious area (acreage)within the disturbed area.

*** ROUND TO THE NEAREST TENTH OF AN ACRE. ***

Total Site Area (acres) 6.5

Total Area to be Disturbed (acres) 4.2

Existing Impervious Area to be Disturbed (acres) 0.0

Future Impervious Area Within Disturbed Area (acres) 1.8

5. Do you plan to disturb more than 5 acres of soil at any one time? No

6. Indicate the percentage (%) of each Hydrologic Soil Group(HSG) at the site.

A (%) 2.2 B (%) 0

C (%) 12.9

D (%) 84.9

7. Is this a phased project? No

8. Enter the planned start and end dates of the disturbance activities.

Start Date 11/01/2023

End Date 11/01/2025

9. Identify the nearest surface waterbody(ies) to which construction site runoff will discharge.

Lower Fall Creek

Drainage ditches and storm sewer systems are not considered surface waterbodies. Please identify the surface waterbody that they discharge to. If the nearest surface waterbody is unnamed, provide a description of the waterbody, such as, "Unnamed tributary to Niagara River."

9a. Type of waterbody identified in question 9?

Stream/Creek Off Site

Other Waterbody Type Off Site Description NONE PROVIDED

9b. If "wetland" was selected in 9A, how was the wetland identified? NONE PROVIDED

10. Has the surface waterbody(ies) in question 9 been identified as a 303(d) segment in Appendix E of GP-0-20-001? No

11. Is this project located in one of the Watersheds identified in Appendix C of GP-0-20-001?

No

12. Is the project located in one of the watershed areas associated with AA and AA-S classified waters?

No

Please use the DEC Stormwater Interactive Map (https://gisservices.dec.ny.gov/gis/stormwater/) to confirm if this site is located in one of the watersheds of an AA or AA-S classified water. To view the watershed areas, click on "Permit Related Layers" on the left side of the map, then click on "Class AA AAS Watersheds."

If No, skip question 13.

13. Does this construction activity disturb land with no existing impervious cover and where the Soil Slope Phase is identified as D (provided the map unit name is inclusive of slopes greater than 25%), E or F on the USDA Soil Survey? NONE PROVIDED If Yes, what is the acreage to be disturbed? NONE PROVIDED

14. Will the project disturb soils within a State regulated wetland or the protected 100 foot adjacent area? No

15. Does the site runoff enter a separate storm sewer system (including roadside drains, swales, ditches, culverts, etc)? Yes

16. What is the name of the municipality/entity that owns the separate storm sewer system?

Town of Dryden

17. Does any runoff from the site enter a sewer classified as a Combined Sewer? No

18. Will future use of this site be an agricultural property as defined by the NYS Agriculture and Markets Law? No

19. Is this property owned by a state authority, state agency, federal government or local government? No

20. Is this a remediation project being done under a Department approved work plan? (i.e. CERCLA, RCRA, Voluntary Cleanup Agreement, etc.) No

Required SWPPP Components

21. Has the required Erosion and Sediment Control component of the SWPPP been developed in conformance with the current NYS Standards and Specifications for Erosion and Sediment Control (aka Blue Book)? Yes

22. Does this construction activity require the development of a SWPPP that includes the post-construction stormwater management practice component (i.e. Runoff Reduction, Water Quality and Quantity Control practices/techniques)? Yes

If you answered No in question 22, skip question 23 and the Post-construction Criteria and Post-construction SMP Identification sections.

23. Has the post-construction stormwater management practice component of the SWPPP been developed in conformance with the current NYS Stormwater Management Design Manual?

Yes

24. The Stormwater Pollution Prevention Plan (SWPPP) was prepared by:

Professional Engineer (P.E.)

SWPPP Preparer

Adam Fishel, PE

Contact Name (Last, First) Fishel Adam

Mailing Address

840 Hanshaw Road, Suite 6

City Ithaca

State New York

Zip

14850

Phone (607) 241-2917

Email Afishel@marathoneng.com

Download SWPPP Preparer Certification Form

Please take the following steps to prepare and upload your preparer certification form:

Click on the link below to download a blank certification form
 The certified SWPPP preparer should sign this form
 Scan the signed form
 Upload the scanned document
 <u>Download SWPPP Preparer Certification Form</u>

Please upload the SWPPP Preparer Certification <u>PDG, LLC SWPPP Preparer - SIGNED.pdf - 10/10/2023 08:36 PM</u> Comment NONE PROVIDED

Erosion & Sediment Control Criteria

25. Has a construction sequence schedule for the planned management practices been prepared?

Yes

26. Select all of the erosion and sediment control practices that will be employed on the project site:

Temporary Structural Construction Road Stabilization Dust Control Silt Fence Stabilized Construction Entrance

Biotechnical None

Vegetative Measures Mulching Seeding

Permanent Structural Land Grading Riprap Slope Protection Rock Outlet Protection

Other

Bioretention pond, infiltration basin, detention basin.

Post-Construction Criteria

* IMPORTANT: Completion of Questions 27-39 is not required if response to Question 22 is No.

27. Identify all site planning practices that were used to prepare the final site plan/layout for the project.

Preservation of Buffers Driveway Reduction Building Footprint Reduction

27a. Indicate which of the following soil restoration criteria was used to address the requirements in Section 5.1.6("Soil Restoration") of the Design Manual (2010 version).

All disturbed areas will be restored in accordance with the Soil Restoration requirements in Table 5.3 of the Design Manual (see page 5-22).

28. Provide the total Water Quality Volume (WQv) required for this project (based on final site plan/layout). (Acre-feet) NONE PROVIDED

29. Post-construction SMP Identification

Use the Post-construction SMP Identification section to identify the RR techniques (Area Reduction), RR techniques(Volume Reduction) and Standard SMPs with RRv Capacity that were used to reduce the Total WQv Required (#28).

Identify the SMPs to be used by providing the total impervious area that contributes runoff to each technique/practice selected. For the Area Reduction Techniques, provide the total

contributing area (includes pervious area) and, if applicable, the total impervious area that contributes runoff to the technique/practice.

Note: Redevelopment projects shall use the Post-Construction SMP Identification section to identify the SMPs used to treat and/or reduce the WQv required. If runoff reduction techniques will not be used to reduce the required WQv, skip to question 33a after identifying the SMPs.

30. Indicate the Total RRv provided by the RR techniques (Area/Volume Reduction) and Standard SMPs with RRv capacity identified in question 29. (acre-feet) 0.17

31. Is the Total RRv provided (#30) greater than or equal to the total WQv required (#28)?

Yes

If Yes, go to question 36. If No, go to question 32.

32. Provide the Minimum RRv required based on HSG. [Minimum RRv Required = (P) (0.95) (Ai) / 12, Ai=(s) (Aic)] (acre-feet) NONE PROVIDED

32a. Is the Total RRv provided (#30) greater than or equal to the Minimum RRv Required (#32)? NONE PROVIDED

If Yes, go to question 33.

Note: Use the space provided in question #39 to summarize the specific site limitations and justification for not reducing 100% of WQv required (#28). A detailed evaluation of the specific site limitations and justification for not reducing 100% of the WQv required (#28) must also be included in the SWPPP.

If No, sizing criteria has not been met; therefore, NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria.

33. SMPs

Use the Post-construction SMP Identification section to identify the Standard SMPs and, if applicable, the Alternative SMPs to be used to treat the remaining total WQv (=Total WQv Required in #28 - Total RRv Provided in #30).

Also, provide the total impervious area that contributes runoff to each practice selected.

NOTE: Use the Post-construction SMP Identification section to identify the SMPs used on Redevelopment projects.

33a. Indicate the Total WQv provided (i.e. WQv treated) by the SMPs identified in question #33 and Standard SMPs with RRv Capacity identified in question #29. (acre-feet) NONE PROVIDED Note: For the standard SMPs with RRv capacity, the WQv provided by each practice = the WQv calculated using the contributing drainage area to the practice - provided by the practice. (See Table 3.5 in Design Manual)

34. Provide the sum of the Total RRv provided (#30) and the WQv provided (#33a). NONE PROVIDED

35. Is the sum of the RRv provided (#30) and the WQv provided (#33a) greater than or equal to the total WQv required (#28)? NONE PROVIDED

If Yes, go to question 36.

If No, sizing criteria has not been met; therefore, NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria.

36. Provide the total Channel Protection Storage Volume (CPv required and provided or select waiver (#36a), if applicable.

CPv Required (acre-feet) 0.069

CPv Provided (acre-feet) 0.069

36a. The need to provide channel protection has been waived because: NONE PROVIDED

37. Provide the Overbank Flood (Qp) and Extreme Flood (Qf) control criteria or select waiver (#37a), if applicable.

Overbank Flood Control Criteria (Qp)

Pre-Development (CFS) 14.64

Post-Development (CFS) 6.9

Total Extreme Flood Control Criteria (Qf)

Pre-Development (CFS) 33.78

Post-Development (CFS) 22.47

37a. The need to meet the Qp and Qf criteria has been waived because: NONE PROVIDED

38. Has a long term Operation and Maintenance Plan for the post-construction stormwater management practice(s) been developed? Yes

If Yes, Identify the entity responsible for the long term Operation and Maintenance PG Dryden, LLC

39. Use this space to summarize the specific site limitations and justification for not reducing 100% of WQv required (#28). (See question #32a) This space can also be used for other pertinent project information.

100% of the WQv is reduced.

Post-Construction SMP Identification

Runoff Reduction (RR) Techniques, Standard Stormwater Management Practices (SMPs) and Alternative SMPs

Identify the Post-construction SMPs to be used by providing the total impervious area that contributes runoff to each technique/practice selected. For the Area Reduction Techniques, provide the total contributing area (includes pervious area) and, if applicable, the total impervious area that contributes runoff to the technique/practice.

RR Techniques (Area Reduction)

Round to the nearest tenth

Total Contributing Acres for Conservation of Natural Area (RR-1) NONE PROVIDED

Total Contributing Impervious Acres for Conservation of Natural Area (RR-1) NONE PROVIDED

Total Contributing Acres for Sheetflow to Riparian Buffers/Filter Strips (RR-2) NONE PROVIDED

Total Contributing Impervious Acres for Sheetflow to Riparian Buffers/Filter Strips (RR-2) NONE PROVIDED

Total Contributing Acres for Tree Planting/Tree Pit (RR-3) NONE PROVIDED

Total Contributing Impervious Acres for Tree Planting/Tree Pit (RR-3) NONE PROVIDED

Total Contributing Acres for Disconnection of Rooftop Runoff (RR-4) NONE PROVIDED

RR Techniques (Volume Reduction)

Total Contributing Impervious Acres for Disconnection of Rooftop Runoff (RR-4) NONE PROVIDED

Total Contributing Impervious Acres for Vegetated Swale (RR-5) NONE PROVIDED

Total Contributing Impervious Acres for Rain Garden (RR-6) NONE PROVIDED

Total Contributing Impervious Acres for Stormwater Planter (RR-7) NONE PROVIDED

Total Contributing Impervious Acres for Rain Barrel/Cistern (RR-8) NONE PROVIDED

Total Contributing Impervious Acres for Porous Pavement (RR-9) NONE PROVIDED

Total Contributing Impervious Acres for Green Roof (RR-10) NONE PROVIDED

Standard SMPs with RRv Capacity

Total Contributing Impervious Acres for Infiltration Trench (I-1) NONE PROVIDED

Total Contributing Impervious Acres for Infiltration Basin (I-2) 1.66

Total Contributing Impervious Acres for Dry Well (I-3) NONE PROVIDED

Total Contributing Impervious Acres for Underground Infiltration System (I-4) NONE PROVIDED

Total Contributing Impervious Acres for Bioretention (F-5) 0.34

Total Contributing Impervious Acres for Dry Swale (O-1) NONE PROVIDED

Standard SMPs

Total Contributing Impervious Acres for Micropool Extended Detention (P-1) NONE PROVIDED Total Contributing Impervious Acres for Wet Pond (P-2) NONE PROVIDED

Total Contributing Impervious Acres for Wet Extended Detention (P-3) NONE PROVIDED

Total Contributing Impervious Acres for Multiple Pond System (P-4) NONE PROVIDED

Total Contributing Impervious Acres for Pocket Pond (P-5) NONE PROVIDED

Total Contributing Impervious Acres for Surface Sand Filter (F-1) NONE PROVIDED

Total Contributing Impervious Acres for Underground Sand Filter (F-2) NONE PROVIDED

Total Contributing Impervious Acres for Perimeter Sand Filter (F-3) NONE PROVIDED

Total Contributing Impervious Acres for Organic Filter (F-4) NONE PROVIDED

Total Contributing Impervious Acres for Shallow Wetland (W-1) NONE PROVIDED

Total Contributing Impervious Acres for Extended Detention Wetland (W-2) NONE PROVIDED

Total Contributing Impervious Acres for Pond/Wetland System (W-3) NONE PROVIDED

Total Contributing Impervious Acres for Pocket Wetland (W-4) NONE PROVIDED

Total Contributing Impervious Acres for Wet Swale (O-2) NONE PROVIDED

Alternative SMPs (DO NOT INCLUDE PRACTICES BEING USED FOR PRETREATMENT ONLY)

Total Contributing Impervious Area for Hydrodynamic NONE PROVIDED

Total Contributing Impervious Area for Wet Vault NONE PROVIDED **Total Contributing Impervious Area for Media Filter** NONE PROVIDED

"Other" Alternative SMP? NONE PROVIDED

Total Contributing Impervious Area for "Other" NONE PROVIDED

Provide the name and manufaturer of the alternative SMPs (i.e. proprietary practice(s)) being used for WQv treatment.

Note: Redevelopment projects which do not use RR techniques, shall use questions 28, 29, 33 and 33a to provide SMPs used, total WQv required and total WQv provided for the project.

Manufacturer of Alternative SMP NONE PROVIDED

Name of Alternative SMP NONE PROVIDED

Other Permits

40. Identify other DEC permits, existing and new, that are required for this project/facility. None

If SPDES Multi-Sector GP, then give permit ID NONE PROVIDED

If Other, then identify NONE PROVIDED

41. Does this project require a US Army Corps of Engineers Wetland Permit? No

If "Yes," then indicate Size of Impact, in acres, to the nearest tenth NONE PROVIDED

42. If this NOI is being submitted for the purpose of continuing or transferring coverage under a general permit for stormwater runoff from construction activities, please indicate the former SPDES number assigned. NONE PROVIDED

MS4 SWPPP Acceptance

43. Is this project subject to the requirements of a regulated, traditional land use control MS4?

Yes - Please attach the MS4 Acceptance form below

If No, skip question 44

44. Has the "MS4 SWPPP Acceptance" form been signed by the principal executive officer or ranking elected official and submitted along with this NOI? Yes

MS4 SWPPP Acceptance Form Download

Download form from the link below. Complete, sign, and upload. <u>MS4 SWPPP Acceptance Form</u>

MS4 Acceptance Form Upload

NONE PROVIDED Comment NONE PROVIDED

Owner/Operator Certification

Owner/Operator Certification Form Download

Download the certification form by clicking the link below. Complete, sign, scan, and upload the form. Owner/Operator Certification Form (PDF, 45KB)

Upload Owner/Operator Certification Form

PDG, LLC SWPPP Owner Cert - SIGNED.pdf - 10/11/2023 10:32 PM Comment NONE PROVIDED

Attachments

Date	Attachment Name	Context	User
10/11/2023 10:32	PDG, LLC SWPPP Owner Cert -	Attachment	ADAM
PM	SIGNED.pdf		FISHEL
10/10/2023 8:36	PDG, LLC SWPPP Preparer -	Attachment	ADAM
PM	SIGNED.pdf		FISHEL

Owner/Operator Certification Form

SPDES General Permit For Stormwater Discharges From Construction Activity (GP-0-20-001)

Project/Site Name:	Evergreen Apartments	s 1061 Dryden Road,	Dryden NY					
eNOI Submission N	eNOI Submission Number: HPS-A8WD-GM4C7							
eNOI Submitted by:	Owner/Operator	SWPPP Preparer	Other					

Certification Statement - Owner/Operator

I have read or been advised of the permit conditions and believe that I understand them. I also understand that, under the terms of the permit, there may be reporting requirements. I hereby certify that this document and the corresponding documents were prepared under my direction or supervision. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further understand that coverage under the general permit will be identified in the acknowledgment that I will receive as a result of submitting this NOI and can be as long as sixty (60) business days as provided for in the general permit. I also understand that, by submitting this NOI, I am acknowledging that the SWPPP has been developed and will be implemented as the first element of construction, and agreeing to comply with all the terms and conditions of the general permit for which this NOI is being submitted.

M.I.

Last Name

Owner/Operator First Name

Tim

Signature

10	11	123		

Date

Department of Environmental Conservation

SWPPP Preparer Certification Form

SPDES General Permit for Stormwater Discharges From Construction Activity (GP-0-20-001)

Project Site Information Project/Site Name

Evergreen Apartments - 1061 Dryden Road, Dryden, NY

Owner/Operator Information

Owner/Operator (Company Name/Private Owner/Municipality Name)

PDG, LLC

Certification Statement – SWPPP Preparer

I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of the GP-0-20-001. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of this permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

Adam	М	Fishel
First name	MI	Last Name
11-201.11		
Offician 1 T.VO		10/10/23
Signature		Date

NEW YORK STATE OF OPPORTUNITYDepartment of Environmental ConservationNYS Department of Environmental Conservation Division of Water 625 Broadway, 4th Floor Albany, New York 12233-3505
MS4 Stormwater Pollution Prevention Plan (SWPPP) Acceptance Form
Construction Activities Seeking Authorization Under SPDES General Permit *(NOTE: Attach Completed Form to Notice Of Intent and Submit to Address Above)
I. Project Owner/Operator Information
1. Owner/Operator Name:
2. Contact Person:
3. Street Address:
4. City/State/Zip:
II. Project Site Information
5. Project/Site Name:
6. Street Address:
7. City/State/Zip:
III. Stormwater Pollution Prevention Plan (SWPPP) Review and Acceptance Information
8. SWPPP Reviewed by:
9. Title/Position:
10. Date Final SWPPP Reviewed and Accepted:
IV. Regulated MS4 Information
11. Name of MS4:
12. MS4 SPDES Permit Identification Number: NYR20A
13. Contact Person:
14. Street Address:
15. City/State/Zip:
16. Telephone Number:

MS4 SWPPP Acceptance Form - continued

V. Certification Statement - MS4 Official (principal executive officer or ranking elected official) or Duly Authorized Representative

I hereby certify that the final Stormwater Pollution Prevention Plan (SWPPP) for the construction project identified in question 5 has been reviewed and meets the substantive requirements in the SPDES General Permit For Stormwater Discharges from Municipal Separate Storm Sewer Systems (MS4s). Note: The MS4, through the acceptance of the SWPPP, assumes no responsibility for the accuracy and adequacy of the design included in the SWPPP. In addition, review and acceptance of the SWPPP by the MS4 does not relieve the owner/operator or their SWPPP preparer of responsibility or liability for errors or omissions in the plan.

Printed Name:

Title/Position:

Signature:

Date:

VI. Additional Information

(NYS DEC - MS4 SWPPP Acceptance Form - January 2015)

Appendix D

Contractor/Subcontractors; Name, Responsibilities, and Certification Statements & Training Cards and Numbers

Appendix E

Soils Report, Soil Map, Drainage Info/Maps

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for **Tompkins County, New York**

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	
How Soil Surveys Are Made	
Soil Map	8
Soil Map	9
Legend	
Map Unit Legend	
Map Unit Descriptions	11
Tompkins County, New York	13
BtF—Bath, Valois, and Lansing soils, 35 to 60 percent slopes	13
CnB—Chenango gravelly loam, fan, 0 to 8 percent slopes	16
DgB—Darien gravelly silt loam, 2 to 8 percent slopes	17
References	20

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP L	EGEND		MAP INFORMATION
Area of Int	terest (AOI) Area of Interest (AOI)		Spoil Area	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soils		۵	Stony Spot	
	Soil Map Unit Polygons	0	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
~	Soil Map Unit Lines	\$	Wet Spot	Enlargement of maps beyond the scale of mapping can cause
	Soil Map Unit Points	\triangle	Other	misunderstanding of the detail of mapping and accuracy of soil
 Special	Point Features		Special Line Features	line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed
అ	Blowout	Water Fea		scale.
	Borrow Pit	_~	Streams and Canals	
×	Clay Spot	Transport	Rails	Please rely on the bar scale on each map sheet for map measurements.
\diamond	Closed Depression	~	Interstate Highways	
X	Gravel Pit		US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
0 00	Gravelly Spot	~	Major Roads	Coordinate System: Web Mercator (EPSG:3857)
0	Landfill	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
Λ.	Lava Flow	Backgrou		projection, which preserves direction and shape but distorts
علم	Marsh or swamp	Ball	Aerial Photography	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more
~	Mine or Quarry			accurate calculations of distance or area are required.
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as
õ	Perennial Water			of the version date(s) listed below.
Š	Rock Outcrop			Soil Survey Area: Tompkins County, New York
+	Saline Spot			Survey Area Data: Version 18, Sep 10, 2022
* **	Sandy Spot			Soil map units are labeled (as space allows) for map scales
	Severely Eroded Spot			1:50,000 or larger.
\$	Sinkhole			
>	Slide or Slip			Date(s) aerial images were photographed: Apr 1, 2020—Oct 1, 2020
ø	Sodic Spot			-
<i>نو</i> ز				The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
BtF	Bath, Valois, and Lansing soils, 35 to 60 percent slopes	0.8	12.9%
CnB	Chenango gravelly loam, fan, 0 to 8 percent slopes	0.1	2.2%
DgB	Darien gravelly silt loam, 2 to 8 percent slopes	5.4	84.9%
Totals for Area of Interest	·	6.4	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or

landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Tompkins County, New York

BtF—Bath, Valois, and Lansing soils, 35 to 60 percent slopes

Map Unit Setting

National map unit symbol: 2v32j Elevation: 330 to 2,460 feet Mean annual precipitation: 31 to 70 inches Mean annual air temperature: 39 to 52 degrees F Frost-free period: 100 to 190 days Farmland classification: Not prime farmland

Map Unit Composition

Bath and similar soils: 30 percent Valois and similar soils: 25 percent Lansing and similar soils: 20 percent Minor components: 25 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Bath

Setting

Landform: Mountains, hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Nose slope, side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy till derived mainly from gray and brown siltstone, sandstone, and shale

Typical profile

A - 0 to 4 inches: channery silt loam Bw1 - 4 to 15 inches: channery silt loam Bw2 - 15 to 25 inches: channery loam E - 25 to 29 inches: channery loam Bx - 29 to 52 inches: very channery silt loam C - 52 to 72 inches: very channery silt loam

Properties and qualities

Slope: 35 to 60 percent
Surface area covered with cobbles, stones or boulders: 0.0 percent
Depth to restrictive feature: 26 to 38 inches to fragipan
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 24 to 36 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Available water supply, 0 to 60 inches: Low (about 4.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: C *Ecological site:* F140XY030NY - Well Drained Dense Till *Hydric soil rating:* No

Description of Valois

Setting

Landform: End moraines, lateral moraines, valley sides Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Loamy till derived mainly from sandstone, siltstone, and shale

Typical profile

H1 - 0 to 2 inches: gravelly silt loam
H2 - 2 to 32 inches: gravelly silt loam
H3 - 32 to 49 inches: gravelly silt loam
H4 - 49 to 60 inches: gravelly silt loam

Properties and qualities

Slope: 35 to 60 percent
Depth to restrictive feature: 24 to 36 inches to fragipan
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 24 to 35 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: C Ecological site: F140XY027NY - Well Drained Till Uplands Hydric soil rating: No

Description of Lansing

Setting

Landform: Hills, drumlinoid ridges Landform position (two-dimensional): Backslope, summit, shoulder Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex Across-slope shape: Convex Parent material: Calcareous loamy lodgment till derived from limestone, sandstone, and shale

Typical profile

A - 0 to 8 inches: gravelly silt loam E - 8 to 13 inches: gravelly silt loam Bt/E - 13 to 21 inches: gravelly silt loam Bt1 - 21 to 28 inches: gravelly silt loam Bt2 - 28 to 39 inches: gravelly silt loam C - 39 to 79 inches: gravelly loam

Properties and qualities

Slope: 35 to 60 percent

Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.01 to 1.42 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Available water supply, 0 to 60 inches: Moderate (about 8.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: F101XY012NY - Till Upland, F140XY027NY - Well Drained Till Uplands Hydric soil rating: No

Minor Components

Honeoye

Percent of map unit: 5 percent Landform: Till plains, drumlins Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Lordstown, very stony

Percent of map unit: 5 percent Landform: Hills, mountains Landform position (two-dimensional): Backslope Landform position (three-dimensional): Mountainflank, nose slope, side slope, free face Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Mardin

Percent of map unit: 5 percent Landform: Mountains, hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Head slope, side slope Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Cayuga

Percent of map unit: 5 percent Landform: Till plains, lake plains Landform position (two-dimensional): Summit Landform position (three-dimensional): Side slope, riser Down-slope shape: Concave Across-slope shape: Convex Hydric soil rating: No

Darien

Percent of map unit: 5 percent Landform: Till plains, hills, drumlinoid ridges Landform position (two-dimensional): Footslope, summit Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

CnB—Chenango gravelly loam, fan, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9xlc Elevation: 160 to 1,970 feet Mean annual precipitation: 32 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 120 to 160 days Farmland classification: All areas are prime farmland

Map Unit Composition

Chenango, fan, and similar soils: 75 percent *Minor components:* 25 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Chenango, Fan

Setting

Landform: Alluvial fans Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Convex Parent material: Gravelly loamy glaciofluvial deposits over sandy and gravelly glaciofluvial deposits, derived mainly from sandstone, shale, and siltstone

Typical profile

H1 - 0 to 8 inches: gravelly loam

H2 - 8 to 26 inches: gravelly silt loam

H3 - 26 to 60 inches: very gravelly loamy coarse sand

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 5.95 in/hr)
Depth to water table: About 36 to 60 inches

Frequency of flooding: RareNone *Frequency of ponding:* None *Available water supply, 0 to 60 inches:* Low (about 4.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: A Ecological site: F140XY021NY - Dry Outwash Hydric soil rating: No

Minor Components

Genesee (hamlin)

Percent of map unit: 5 percent Hydric soil rating: No

Red hook

Percent of map unit: 5 percent Hydric soil rating: No

Arkport

Percent of map unit: 5 percent Hydric soil rating: No

Tioga

Percent of map unit: 5 percent Hydric soil rating: No

Braceville

Percent of map unit: 5 percent Hydric soil rating: No

DgB—Darien gravelly silt loam, 2 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9xld Elevation: 330 to 2,460 feet Mean annual precipitation: 32 to 42 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 120 to 160 days Farmland classification: Prime farmland if drained

Map Unit Composition

Darien and similar soils: 75 percent Minor components: 25 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Darien

Setting

Landform: Till plains, hills, drumlinoid ridges

Landform position (two-dimensional): Footslope, summit Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Linear Parent material: Loamy till derived predominantly from calcareous gray shale

Typical profile

H1 - 0 to 9 inches: gravelly silt loam
H2 - 9 to 13 inches: gravelly silt loam
H3 - 13 to 30 inches: gravelly silty clay loam
H4 - 30 to 60 inches: gravelly silty clay loam

Properties and qualities

Slope: 2 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 6 to 15 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Available water supply, 0 to 60 inches: Moderate (about 7.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: C/D Ecological site: F140XY028NY - Moist Till Upland Hydric soil rating: No

Minor Components

Rhinebeck

Percent of map unit: 5 percent Hydric soil rating: No

Lyons

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Ovid

Percent of map unit: 5 percent Hydric soil rating: No

Erie

Percent of map unit: 5 percent Hydric soil rating: No

llion

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes Custom Soil Resource Report

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

www.cmeassociates.com

Transmittal

May 16, 2016

M&R Entities, LLC 117 Horizon Drive Ithaca, New York 14850

Attn: Mr. Gary Sloan, Owner

Re: Evergreen Townhomes Project at 1061 Dryden Road Ithaca, New York CME Project No.: 27131-05

Gentlepeople:

Enclosed you will find....

Number of Copies

3

<u>Report Number/Description</u> 27131B-01-0516/Geotechnical Services Report

This report was emailed to Mr. Gary Sloan at squeakygs@gmail.com on 05/16/16.

Respectfully submitted, **CME Associates, Inc.**

Matt Hurst, Ph.D., EIT Staff Engineer

MH.bms

A New York State Certified Woman-Owned Business Enterprise (WBE)

6035 Corporate Drive East Syracuse, New York 13057 (315) 701-0522 (315) 701-0526 (Fax)

www.cmeassociates.com

May 16, 2016

M&R Entities, LLC 117 Horizon Drive Ithaca, New York 14850

Attn: Mr. Gary Sloan, Owner

Re: Infiltration Testing and Test Pit Services for the Evergreen Townhomes Project at 1061 Dryden Road Ithaca, New York CME Report No.: 27131B-01-0516 Page 1 of 2

Gentlepeople:

1.0 INTRODUCTION

CME Associates, Inc. (CME) was retained by M&R Entities, LLC (Client) to provide Infiltration Testing and Test Pit services for the Evergreen Townhomes Project at 1061 Dryden Road in Ithaca, New York. CME staff witnessed the excavation of 8 Test Pits, and then conducted 6 Infiltration Tests. Test Pits were excavated by a subcontractor to CME. This report has been provided pursuant to CME's Proposal/Agreement number 05.4852, executed by Mr. Gary Sloan, Owner with Client on 05/06/16. A summary of CME's work, commencing on 05/12/16 is presented herein. The Infiltration Test Reports, Test Pit Logs, an Exploration Location Sketch, and Test Pit Photographs are attached.

2.0 METHODS

The Test Pit locations were staked in the field by CME, at locations selected by others. CME contacted Dig Safely New York (DSNY) at least three business days in advance of the exploration program. Elevation at grade was estimated to the nearest ½ foot utilizing existing contour lines on a Concept Grading Map, labeled L001, provided by HOLT Architects, P.C.

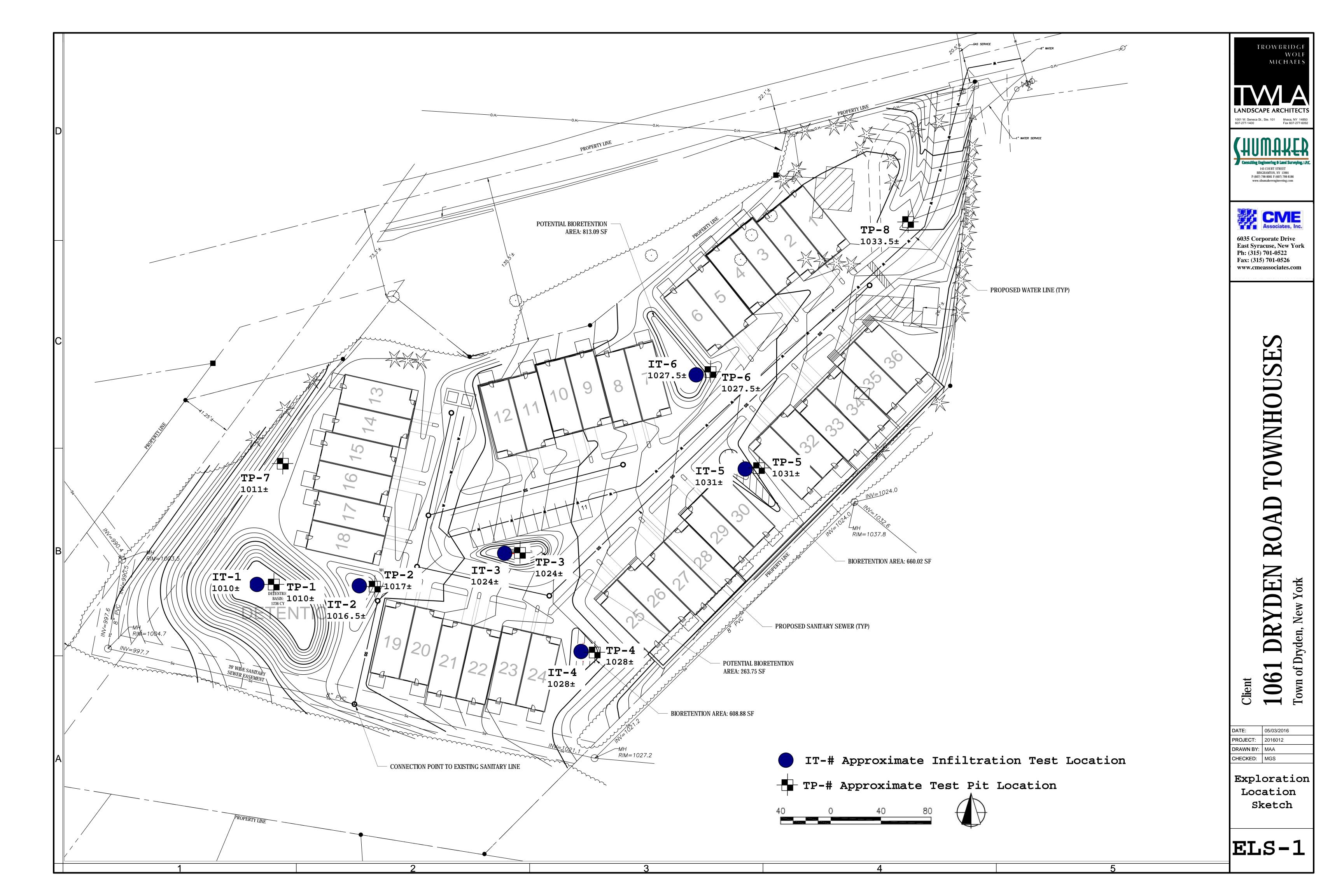
The Test Pits were excavated and backfilled by CME's Subcontractor, Sherman Vincent on 05/12/16 using a Case CX80 backhoe, equipped with a 24" wide general purpose bucket, in the presence of the undersigned Engineer. The Test Pits were backfilled with the excavated material, and the surface was repaired to nearly match existing grade. Please refer to the Test Pit Logs, labeled TP-1 through TP-8, for further details.

Adjacent to Test Pits TP-1 through TP-6, an Infiltration Test casing was installed by excavating to approximately 6 feet below grade and then installing a 4" O.D. PVC casing. Infiltration Tests were performed at depths selected by others, in general conformance with New York State Stormwater Management Design Manual, Appendix D: Infiltration Testing Requirements. The test details and results are given in the attached Infiltration Test Reports, labeled IT-1 through IT-6.

CME Report No.: 27131B-01-0516 Page 2 of 2

3.0 CLOSING

CME's services are provided according to the requirements of the referenced CME Proposal/Agreement. No other representations, expressed or implied, are intended or made with respect to the information provided herein, and including but not limited to, its suitability for use by others.


Please do not hesitate to contact our office if you have any questions regarding this report, its conclusions and recommendations.

Respectfully Submitted, **CME Associates, Inc.**

Matt Hurst, Ph.D., EIT Staff Engineer

Attachment Listing:

Exploration Location Sketch, ELS-1 (1 of 1) Infiltration Test Reports, IT-1 through IT-6 (6 of 6) CME Subsurface Exploration-Test Pit Logs, TP-1 through TP-8 (8 of 8) Test Pit Photographs (8 of 8) *General Information & Key to Test Boring Logs (4 of 4)*

					INFIL	TRATION Test ID:			RT				
Drojacti			<u>aurahamaa r</u>	-+ 1001				-					
Project:	-		ownhomes a d, Ithaca, Ne			CME Repo	t Date:						
Client:		Entities			`				xploration Lo	ocation	Skoto	h	
Chern.			, LLO						onczyk	Jualion	OREIC	11	
Test Pre	parati	on an	d Dimensi	ons		10011	noian.		onozyk				
Casing in	stalled	in :		\checkmark	Test F	Pit			Borehole				
Casing di			vpe:	4 inch									
۸	Evictir	na arac	la alavation	(ft)·						101	0.0	т	
			le elevation up length ab								<u>0.0</u> .1	±	
			g elevation ((A+B)=		1.1	±	
			tom of test h						(,,,,,)_		.2		
			st hole eleva						(C-D)=)3.9	±	
	Burmi	ster cla	assification of	of soil a	at botto	m of hole:	Brown m	ottled SII	_T, some cmf SA		CLAY, tr	ace cmf GRAVE	EL
									l: 3" of Pea G				
	Date a	and tim	e pre-soake	ed:			05/1	2/16	Time:	12	:50		
	Depth	to wat	er level, bel										
						re-soak fillir							
				Just pr	rior to f	irst test fillir	ng (in):	70.0	Date:	5/13	3/16	Time: 13:07	7
Test Ob	servat	ions											
		Rur			Rur			Rur			Rur		
	(mm:hhi) 13:30 13:31 13:33 13:34 13:39 13:49	00 (h:mm) 010 (h:mm) 020 (h:mm)	0.29 Depth to water level, below top of casing (in) 0.29 0.20 0.29 0.29 0.29 0.29 0.29 0.29	(mm:) 14:29 14:34 14:34 14:59 15:14 15:29	1:00 Elapsed Time 0:00 00 (h:mm) 0:00 00 (h:mm)	(in) (in) (in) (in) (in)	(mm:hh) 15:29 15:34 15:39 15:44 15:59 16:14 16:29	United High and Constraints (High and Constraints) (High and Constra	8.29 (in) (in) (in)	(mm:hhi) 16:29 16:34 16:34 16:59 17:14 17:29	(h:mm) 100:0	(in) (in) (in) (in)	•
	13:59	0:30	63.3										1
	14:14		64.0										1
	14:29	1:00	64.8										
Test Res	sults												
					Run:	Run 1	Ru	n 2	Run 3	Ru	n 4		
		Inf	iltration Rate	e (inch/		2.8		.0	2.8		.8		
			Infiltration			our):	2.8		Based on a	verage	of all	four runs	
								\checkmark	Based on re	esult of	last ru	In	
Testing R	Require	ments.					water M	lanage	ment Desigr	n Manu	ial, Apj	pendix D: In	filtration

					INFIL	TRATION			RT				
,	1 <u> </u>					Test ID:	1						
Project:	-		ownhomes a			CME Repo							
Client		n Road Entities	d, Ithaca, Ne	ew Yor	<			05/13/1		action	Skoto	b	
Client:	NIGR	Entities	, LLC					A. Bor	ploration Lo	cation	Skeld	n	
Test Pre	narati	on an	d Dimensi	ons		TECH	lician.	A. DUI	ЛСZУК				
Casing in					Test F	Dit			Borehole				
Casing III			ne.	4 inch					DUIEIIUIE				
		-	-	-									
			le elevation							101		±	
			up length ab							1.		-	
			g elevation ((A+B)=		8.3	±	
			tom of test h st hole eleva						(C D)-	7. 101			
L									(C-D)= mf SAND, little ci				
									: 3" of Pea Gr		EL, liac		
			e pre-soake			-	-			12:	45	•	
			er level, bel										
	•					re-soak fillin	ng (in):	71.0					
				Just pr	ior to f	irst test fillin	ng (in):	None Not	Date:	5/13	8/16	Time: 13:09	}
Test Ob	servat	ions											
		Rur			Rur			Rur	13		Ru		1
			n n			n Ú						<u>, n</u>	İ I
	шш		leve	шш		leve	E E		leve	E E		leve Isinę	1
	hh:	Je	iter f ca	hh:	Je	iter f ca	:. HH	Je	iter f ca	ЧЧ	e	iter f ca	
) er	Time	e d) е	Time	p o)e (Time	o d)e	Time	e ve	
	Tin	sed m)	h to ∢ to	Tin		h to v to	Tin	sed m)	v to	Tin	n) šed	h to v to	
	Real Time (hh:mm)	Elapsed ⁻ (h:mm)	Depth to water level, below top of casing (in)	Real Time (hh:mm)	Elapsed (h:mm)	Depth to water level, below top of casing (in)	Real Time (hh:mm)	Elapsed ⁻ (h:mm)	Depth to water level, below top of casing (in)	Real Time (hh:mm)	Elapsed ⁻ (h:mm)	Depth to water level, below top of casing (in)	
	<u>⊮</u> 13:22	표 () 0:00	<u>口道는</u> 70.0	<u>∝</u> 14:22	표 () 0:00	<u>□ă</u> 710	<u>∩</u> 15:22	<u> </u>				<u> </u>	
	13:22		70.0	14:22		71.0 71.5	15:22	0:00	70.0 70.5	16:22 16:23		70.8	i I
	13:23		70.3	14:23	0:01	71.5	15:23	0:01	70.5	16:23		71.0	ł
	13:25		72.0	14:26	0:02	73.0	15:24	0:02	71.8	16:24		71.5	
	13:28		74.0	14:28	0:04	74.3	15:29	0:07	73.3	16:28		73.8	
	13:32		77.3	14:32	0:10	76.8	15:32	0:10	76.3	16:32		77.0	
	13:37	0:15	82.0	14:37	0:15	77.8	15:37	0:15	79.5	16:37		80.0	i I
	13:52	0:30	85.0	14:52	0:30	83.5	15:52	0:30	83.8	16:52		83.3	i I
	14:07	0:45	87.5	15:07	0:45	85.8	16:07	0:45	86.3	17:07		85.8	i I
	14:22	1:00	88.8	15:22	1:00	87.5	16:22	1:00	87.5	17:22		87.3	i I
Test Res	sults						1						
					Run:	Run 1	Rı	ın 2	Run 3	Ru	n 4	1	
		Infi	Itration Rate	e (inch/		18.8		6.5	17.5	16			
		Final	Infiltration	Rate (i	nch/h	our):	16.5		Based on a	verage	e of al	l four runs	
								\checkmark	Based on r	esult o	f last i	run	
<u>Note(s)</u>													
-		-	eneral confo	rmance	e with I	NYS Stormv	vater N	lanagei	ment Design	Manu	al, Ap	pendix D: In	filtration
Testing R	•												
2 Tost la	cation '	and ala	vation selec	stad by	Othor	^							

					INFIL	TRATION Test ID:			RT				
Project:	Evora	roon T	ownhomes a	-t 1061	1	CME Repo	1		01 0516				
FTOJECI.	-		d, Ithaca, Ne					05/13/1					
Client:		Entities							ploration Lo	cation	Sketc	h	
e norma			,					A. Borc		oution			
<u>Test Pre</u>	parati	on an	d Dimensi	ons									
Casing ins				\checkmark	Test F				Borehole				
Casing dia	ameter	and ty	pe:	4 inch	I.D. P	VC							
А	Existir	ng grad	le elevation	(ft):						102	4.0	±	
В	Casing	g sticku	up length ab	ove gr	ade (ft):				0.	7		
	•		g elevation (• •					(A+B)=			±	
			tom of test h							6.		· .	
E			st hole eleva						(C-D)= T, little cmf SAN			±	
									3" of Pea Gr				
			e pre-soake				-			13:	00		
			er level, bel						-				
						re-soak fillir	-						
		_		Just pr	rior to f	irst test fillir	ng (in):	69.3	Date:	5/13	8/16	Time: 13:09)
<u>Test Obs</u>	servat	ions					-			-			-
		Run 1 Run 2 Run 3 Run 4											
	Real Time (hh:mm)	Elapsed Time (h:mm)	Depth to water level, below top of casing (in)	Real Time (hh:mm)	Elapsed Time (h:mm)	Depth to water level, below top of casing (in)	Real Time (hh:mm)	Elapsed Time (h:mm)	Depth to water level, below top of casing (in)	Real Time (hh:mm)	Elapsed Time (h:mm)	Depth to water level, below top of casing (in)	
	13:10		55.0	14:10	0:00	54.3	15:10	0:00	54.8	16:10		55.0	
	13:12	0:02	55.0	14:15	0:05	54.3	15:15	0:05	54.8	16:15	0:05	55.0	
	13:13		55.0	14:20	0:10	54.5	15:20	0:10	54.8	16:20		55.0	
	13:15		55.0	14:25	0:15	54.5	15:25	0:15	55.0	16:25		55.3	
	13:20		55.3	14:40	0:30	54.8	15:40	0:30	55.3	16:40		55.5	
	13:25		55.3	14:55	0:45	55.0	15:55	0:45	55.5	16:55		55.8	
	13:40 13:55	0:30 0:45	55.5 55.8	15:10	1:00	55.3	16:10	1:00	55.8	17:10	1:00	56.0	
	14:10	1:00	56.3										
	11.10	1.00	00.0										
Test Res	ults								•				۱ <u>ــــــــــــــــــــــــــــــــــــ</u>
					Run:	Run 1	Rı	ın 2	Run 3	Ru	n 4		
			Itration Rate		,	1.3		.0	1.0	1.	-		
	:	Final I	Infiltration	Rate (i	nch/h	our):	1.0		Based on a				
Note(a)								\checkmark	Based on r	esult o	i last i	านที	
Testing R	equirer	nents.					vater N	lanager	nent Design	Manu	al, Ap	pendix D: In	filtration

					INFIL	TRATION	-	-	RT				
.	_			1 4 9 9 4		Test ID:	1		04.0540				
Project:	-		ownhomes a			CME Repo							
Client		Entities	d, Ithaca, Ne	ew YON	٢			05/13/1		action	Skata	h	
Client:			, LLC					A. Borc	ploration Lo	cation	Skelc	11	
Test Pre	parati	on an	d Dimensi	ons		Tech	nician.	A. DOIC	лодук				
Casing in:				 ✓ 	Test F	Pit			Borehole				
Casing dia			pe:	4 inch	I.D. P	VC							
А	Fristir	na arad	le elevation	(ft)·						102	0.8	±	
			up length ab							1.		,±	
			g elevation ((A+B)=		9.6	±	
	•		om of test h						()	7.			
	Bottor	n of tes	st hole eleva	ation:					(C-D)=		2.2	±	
	Burmi	ster cla	assification of	of soil a	at botto	m of hole:	Brown S	ILT, some	mf SAND, some	e CLAY			
			nd type of so			-	-						
			e pre-soake				05/1	12/16	Time:	12:	45		
	Depth	to wat	er level, bel				va (in):	65.0					
						re-soak fillir ïrst test fillir	-			5/13	2/16	Time: 8:45	
Test Obs	ervat	ions		Just pi			ıy (iii).	00.0	Date.	0/10	0/10	TIME: 0.4J	
100100			<u> </u>		Rur		1	Due	2	I	Du	n 1	i.
		Rur			Rui				Ru				
	Real Time (hh:mm)	Elapsed Time (h:mm)	Depth to water level, below top of casing (in)	Real Time (hh:mm)	Elapsed Time (h:mm)	Depth to water level, below top of casing (in)	Real Time (hh:mm)	Elapsed Time (h:mm)	Depth to water level, below top of casing (in)	Real Time (hh:mm)	Elapsed Time (h:mm)	Depth to water level, below top of casing (in)	
	8:47	0:00	<u> </u>	9:47	0:00	64.0	10:47	0:00	64.0	11:47		64.0	
	8:48	0:01	64.0	10:02		64.0	11:02	0:15	64.0	12:02		64.3	
	8:49	0:02	64.0	10:17	0:30	64.0	11:17	0:30	64.0	12:17		64.3	
	8:52	0:05	64.0	10:32	0:45	64.0	11:32	0:45	64.0	12:32	0:45	64.3	
	9:01	0:14	64.0	10:47	1:00	64.0	11:47	1:00	64.0	12:47	1:00	64.3	
	9:17	0:30	64.0										
	9:32	0:45	64.0										
	9:47	1:00	64.0										
Test Res	<u>ults</u>												
					Run:	Run 1		un 2	Run 3	Ru			
			Itration Rate	<u>`</u>	<i>,</i>	0.0).0	0.0	0.	-		
		Final I	Infiltration	Rate (i	nch/h	our):	0.1	\checkmark	Based on a	-			
									Based on r	esult o	f last i	run	
Note(s)					•		, -			• -			
		-	eneral confo	rmance	e with I	NYS Storm	water N	lanager	nent Design	Manu	al, Ap	pendix D: Inf	iltration
Testing R			votion		O+	-							
2. Test 100	Jalion a	anu eie	vation select	lied by	Other	5.							

					INFIL	TRATION			RT				
Desired		.		1 4004		Test ID:			04.0540				
Project:	-		ownhomes a			CME Repo		05/13/1					
Client:		Entities	l, Ithaca, Ne		\				o ploration Lo	cation	Skoto	h	
Chefft.			, LLO					A. Borc		calion	SKEIL	11	
Test Pre	parati	on an	d Dimensi	ons		1001	nician.	A. Dore	лодук				
Casing in	stalled	in :		\checkmark	Test F	Pit			Borehole				
Casing dia	ameter	and ty	pe:	4 inch	I.D. P	VC							
А	Fxistir	na arad	le elevation	(ft)·						103	10	±	
			up length ab							1.		. -	
			g elevation ((A+B)=			±	
	•		om of test h	• •						7.	4		
E			st hole eleva						(C-D)=			±	
			ssification o								ittle CLA	Υ	
			nd type of so				-				45		
			e pre-soake				05/1	12/16	l ime:	12:	45		
	Depth	to wat	er level, bel			ing re-soak fillir	na (in):	65.0					
						irst test fillir				5/13	8/16	Time: 8:45	
Test Obs	servat	ions		ouot pi			9 ().	01.0	Duto.	0/10	// 10	11110. 0.10	
		Rur	n 1		Rur	2		Run	3		Ru	n /	
		i (ui			IXUI					i Nu			
	Real Time (hh:mm)	Elapsed Time (h:mm)	Depth to water level, below top of casing (in)	Real Time (hh:mm)	Elapsed Time (h:mm)	Depth to water level, below top of casing (in)	Real Time (hh:mm)	Elapsed Time (h:mm)	Depth to water level, below top of casing (in)	Real Time (hh:mm)	Elapsed Time (h:mm)	Depth to water level, below top of casing (in)	
	<u>9:05</u>	ш <u>е</u> 0:00	<u> </u>	<u>r</u> 10:05	<u>ш с</u> 0:00	<u> </u>	<u>r</u> 11:05	<u>ше</u> 0:00	<u> </u>	<u>n</u> 12:05		<u> </u>	
	9:06	0:00	65.0	10:00		65.3	11:20	0:00	65.5	12:20		65.8	
	9:07	0:02	65.0	10:35	0:30	65.3	11:35	0:30	65.5	12:35		65.8	
	9:08	0:03	65.0	10:50	0:45	65.5	11:50	0:45	65.5	12:50		65.8	
	9:10	0:05	65.0	11:05	1:00	65.5	12:05	1:00	65.8	13:05		66.0	
	9:15	0:10	65.0										
	9:20	0:15	65.0										
	9:35	0:30	65.0										
	9:50	0:45	65.3										
	10:05	1:00	65.3										
Test Res	sults												
					Run:	Run 1	Ru	ın 2	Run 3	Ru	n 4		
		Infi	Itration Rate	e (inch/	hour):	0.3	C).2	0.3	0.	2		
		Final	Infiltration	Rate (i	nch/h	our):	0.3	\checkmark	Based on a	average	e of all	l four runs	
									Based on r	esult o	f last i	run	
Note(s)													
		•	eneral confo	rmance	e with I	NYS Storm	water N	lanager	nent Design	Manu	al, Ap	pendix D: Inf	filtration
Testing R	-				• •								
2. Test lo	cation a	and ele	vation select	cted by	Other	S.							

					INFIL	TRATION			RT				
	-					Test ID:							
Project:	-		ownhomes a			CME Repo							
Client		n Road Entities	d, Ithaca, Ne	ew York	(05/13/1		action	Cliate	b	
Client:		Enuties	, LLC					A. Bord	ploration Lo	cation	Skelc	1	
Test Pre	parati	on an	d Dimensi	ons		Tech	nician.	A. DUIC	людук				
Casing in					Test F	Pit			Borehole				
Casing dia			vpe:	4 inch									
_		-	-	(61).						400			
			le elevation							<u>102</u> 1.		±	
			up length ab g elevation (±	
	•		tom of test h	• •					(A+B)=	8			
			st hole eleva						(C-D)=			±	
									CLAY, some cm				
									3" of Pea Gr				
	Date a	and tim	e pre-soake	ed:			05/1	12/16	Time:	13:	05		
	Depth	to wat	er level, bel										
						re-soak fillir	-						
		_		Just pr	ior to f	irst test fillir	ng (in):	75.0	Date:	5/13	8/16	Time: 8:55	
<u>Test Obs</u>	servat	ions											
		Rur			Rur	n 2	Run 3				Ru		
	(hh:mm) (hh:mm	eumination eumina	0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	(hh:mm) 85:6 10:13 10:58 10:43 10:58	00 (h:mm) 012 (h:mm)	Depth to water level, 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	(hh:mm) 10:58 11:13 11:28 11:43 11:58	errore Elapsed Time 0:00 0:15 0:30 0:45 1:00	Depth to water level, 1.1 below top of casing 1.2 L 2.1.2 below top of casing (in)	(hh:mm) 11:28 12:13 12:43 13:00	0:15 0:30 0:45	Depth to water level, 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.1	
Test Res													
1031 103					Run:	Run 1	D,	ın 2	Run 3	Ru	n 4	1	
		Infi	iltration Rate	/inch		0.0		un 2).3	0.0	Ru 0.			
	<u> </u>		Infiltration		, i		0.1	<u></u>	Based on a	-		l four runs	
						<i>j</i> -	411		Based on r	-			
Note(s)										Sourt O	1 1031 1		
	erforme	ed in ae	eneral confo	rmance	e with I	NYS Storm	water M	lanager	nent Design	Manu	al. An	pendix D: Int	filtration
Testing R		-				0.0111			<u>-</u>		, • • - •	r	
-	•		evation seled	cted by	Other	5.							

www.cmeassociates.com

				T	EST PI	T LOG	
Project:	Evergreen	Townho	mes at 10	61 Dryden I	Road	Report No.:	27131B-01-0516
Ithaca, N	lew York			•		Location of Test Pit:	See Exploration Location Sketch
Client:	M&R Ent	ities, LLC	2			Ground Elevation:	1010 ± (See Remark 2)
						Date	Start: 05-12-16 Finish: 05-12-1
Test Pit	No. TP-1		Sheet 1 of	f 1		Representative:	M. Hurst
						Observations	
				Date	Time	1	
				05-12-16	9:55 Al		
						(See Remark 3)	
		DEI					CATION OF MATERIAL
			0F	DEPTH	NOTES		- FINE and 35-50%
		SAM		OF	OR		- MEDIUM some 20-35%
DEPTH	SAMPLE	FROM	TO	CHANGE	PIT proeu e	C	- COARSE little 10-20% trace 0-10%
(Feet) 0	NUMBER	(FEET)	(FEET)	(FEET)	PROFILE	Dark Brown Topsoil	trace 0-10% and Organic Matter, little ROOTS
0				0.7		(moist, easy digging)	and Organic Matter, inthe KOOT
				0.7		Brown cmf SAND ar	nd SILT, some cmf GRAVEL, tra
				2.0		COBBLES (moist, m	
							, some cmf SAND, little CLAY,
						trace cmf GRAVEL (
						hard digging)	See Remark 4
						aa 6,	
5							
				6.6			
						hard digging)	SAND, trace CLAY (wet, medium
						Bottom of Test Pit @) 8.1'
10 REMAR							

REMARKS:

1. This test pit was excavated by Sherman Vincent utilizing a Case CX80 backhoe equipped with a 24" wide all-purpose bucket.

2. Elevation at grade was estimated to the nearest 0.5 feet utilizing existing contour lines on a Concept Grading Map, labeled L001, provided by HOLT Architects, P.C.

3. A small amount of perched water began to seep in very slowly at about 7.5'.

4. Clay lenses were noted throughout.

www.cmeassociates.com

				T	EST PI	T LOG		
Project:	Evergreen	Townho	mes at 10	61 Dryden 1	Road	Report No.:	27131B-01-0516	
	lew York			2		Location of Test Pit:	See Exploration Location S	Sketch
Client:	M&R Ent	ities, LLC	2			Ground Elevation:	1017 ± (See Remark 2)	
						Date	Start: 05-12-16 Finish: 05	5-12-10
Test Pit	No. TP-2		Sheet 1 of	f 1		Representative:	M. Hurst	
						Observations		
				Date	Time	- r -		
				05-12-16	9:25 AN	M None Noted		
		DEI	PTH			CLASSIFI	CATION OF MATERIAL	
)F	DEPTH	NOTES		FINE and 35-50%	
			IPLE	OF	OR		MEDIUM some 20-35%	
DEPTH	SAMPLE	FROM	TO	CHANGE	PIT profile	С	- COARSE little 10-20%)
(Feet)	NUMBER	(FEET)	(FEET)	(FEET)	PROFILE	Dark Brown Topsoil	trace 0-10% and Organic Matter, trace R0	
0				0.5		(moist, easy digging)	and Organic Matter, trace K	0013
				0.5			ome SILT, some cmf GRAV	'EL
							e ROOT HAIRS (moist to v	
						medium hard digging		,
				2.9				
						Brown CLAY, some S	SILT, little mf SAND (moist	,
				3.7		medium hard digging		
							SAND, little cmf GRAVEL	,
_						trace COBBLES (mo	st to wet, medium hard digg	ring)
5				5.0				
				5.8			CAND (CLAV (1.
						hard digging)	SAND, trace CLAY (wet, m	ieaiun
						See Remark 3		
						500 IX//////K J		
						Bottom of Test Pit @	8.1'	
							-	

REMARKS:

1. This test pit was excavated by Sherman Vincent utilizing a Case CX80 backhoe equipped with a 24" wide all-purpose bucket.

2. Elevation at grade was estimated to the nearest 0.5 feet utilizing existing contour lines on a Concept Grading Map, labeled L001, provided by HOLT Architects, P.C.

3. Small Silty Clay lenses were present.

				T	EST PI	T LOG		
Project:	Evergreen	Townho	mes at 10	61 Dryden 1	Road	Report No.: 27131B-01-0516		
Ithaca, N	lew York			2		Location of Test Pit:	See Exploration Location Sketch	
Client:	M&R Ent	ities, LLO				Ground Elevation:	1024 ± (See Remark 2)	
						Date	Start: 05-12-16 Finish: 05-12-10	
Test Pit	No. TP-3	3	Sheet 1 of	f 1		Representative:	M. Hurst	
						Observations		
				Date	Time	1		
				05-12-16	9:00 AI	M None Noted		
		DE	РТН			CLASSIFI	CATION OF MATERIAL	
)F	DEPTH	NOTES		- FINE and 35-50%	
			IPLE	OF	OR		- MEDIUM some 20-35%	
DEPTH	SAMPLE	FROM	ТО	CHANGE	PIT	С	- COARSE little 10-20%	
(Feet)	NUMBER	(FEET)	(FEET)	(FEET)	PROFILE		$\frac{\text{trace } 0.10\%}{100}$	
0				0.5		(moist, easy digging)	and Organic Matter, little ROOTS	
				0.5		Light Brown cmf SA	ND, some SILT, some cmf	
							BLES, trace ROOT HAIRS (moi	
				1.9		medium hard digging	-	
						Brown Mottled SILT	, little cmf SAND, little CLAY	
						(moist, medium hard		
						See Remark 3		
5								
				6.5		D 0' " 0 " (
							noist to wet, hard digging)	
						See Remark 4		
						Bottom of Test Pit @	8.8'	
						Doctoin of rest Fit (a	/ 0.0	
10								
REMAR	VC.	1	1	1				

REMARKS:

1. This test pit was excavated by Sherman Vincent utilizing a Case CX80 backhoe equipped with a 24" wide all-purpose bucket.

2. Elevation at grade was estimated to the nearest 0.5 feet utilizing existing contour lines on a Concept Grading Map, labeled L001, provided by HOLT Architects, P.C.

3. Small Silty Clay lenses were present.

4. Lenses of Silty fine Sand were observed within these depths that were saturated.

A New York State Certified Woman-Owned Business Enterprise (WBE)

				T	EST PI	T LOG		
Project:	Evergreen	n Townho	mes at 10	61 Dryden	Road	Report No.: 27131B-01-0516		
	lew York			·		Location of Test Pit:	See Exploration Location Sketch	
Client:	M&R Ent	ities, LLC	2			Ground Elevation:	1028 ± (See Remark 2)	
						Date	Start: 05-12-16 Finish: 05-12-16	
Test Pit	No. TP-4	1 5	Sheet 1 of			Representative:	M. Hurst	
						Observations		
				Date	Time	1		
				05-12-16	8:30 AI			
						(See Remark 3)		
		DE	PTH			CLASSIFI	CATION OF MATERIAL	
)F	DEPTH	NOTES		- FINE and 35-50%	
			IPLE	OF	OR		- MEDIUM some 20-35%	
DEPTH	SAMPLE	FROM	TO	CHANGE	PIT	C ·	- COARSE little 10-20%	
(Feet)	NUMBER	(FEET)	(FEET)	(FEET)	PROFILE	Deals Desserve Terreral	trace 0-10%	
0				0.8		(moist, easy digging)	and Organic Matter, trace ROOTS	
				0.0			ome SILT, little mf GRAVEL	
						(moist, medium hard		
						(moist, methani marti		
				2.7				
						Brown SILT, some m	of SAND, some CLAY (moist,	
						medium hard digging))	
						See Remark 4		
5								
				- 0				
				7.8				
							ttle SILT (wet to saturated, hard	
						digging) Bottom of Test Pit @	Q 1?	
						Bottom of Test Pit (a)	0.4	
10								
REMAR	IZC.					1		

REMARKS:

1. This test pit was excavated by Sherman Vincent utilizing a Case CX80 backhoe equipped with a 24" wide all-purpose bucket.

2. Elevation at grade was estimated to the nearest 0.5 feet utilizing existing contour lines on a Concept Grading Map, labeled L001, provided by HOLT Architects, P.C.

3. Insufficient time to determine level of groundwater due to low porosity of soils.

4. Silty Clay lenses were noted throughout.

				T	EST PI	T LOG	
Project:	Evergreen	Townho	mes at 10	061 Dryden		Report No.:	27131B-01-0516
	lew York					Location of Test Pit:	See Exploration Location Sketch
Client:	M&R Ent	ities, LLC	2			Ground Elevation:	1031 ± (See Remark 2)
		-				Date	Start: 05-12-16 Finish: 05-12-16
Test Pit	No. TP-5	5 5	Sheet 1 of	f 1		Representative:	M. Hurst
		•		Gro	und Water (Observations	
				Date	Time	1	
				05-12-16	8:00 AI	M None Noted	
		DEI	PTH			CLASSIFI	CATION OF MATERIAL
		O		DEPTH	NOTES		- FINE and 35-50%
			PLE	OF	OR		- MEDIUM some 20-35%
DEPTH	SAMPLE	FROM	ТО	CHANGE	PIT	C ·	- COARSE little 10-20%
(Feet)	NUMBER	(FEET)	(FEET)	(FEET)	PROFILE	Deals Desserve Terreral	trace 0-10%
0				0.8		HAIRS (moist, easy d	and Organic Matter, trace ROOT
				0.0			ome SILT, little cmf GRAVEL
						(moist, medium hard	-
						(moist, methum nard	uigging
				2.9			
						Light Brown Mottled	SILT, some mf SAND, little CLA
						(moist, medium hard	
						See Remark 3	
5				5.0			
							LAY, little mf SAND (moist,
						medium hard digging))
						D (77 D) (7	
						Bottom of Test Pit @	2, 8.01
10							
REMAR	VC.			1		1	

REMARKS:

1. This test pit was excavated by Sherman Vincent utilizing a Case CX80 backhoe equipped with a 24" wide all-purpose bucket.

2. Elevation at grade was estimated to the nearest 0.5 feet utilizing existing contour lines on a Concept Grading Map, labeled L001, provided by HOLT Architects, P.C.

3. Clay lenses were noted throughout.

				T	EST PI	T LOG	
Project:	Evergreen	Townho	mes at 10	61 Dryden l	Report No.:	27131B-01-0516	
	lew York			J		Location of Test Pit:	See Exploration Location Sketch
Client:	M&R Ent	ities, LLC	2			Ground Elevation:	1027.5 ± (See Remark 2)
		,				Date	Start: 05-12-16 Finish: 05-12-16
Test Pit	No. TP-6	5	Sheet 1 of	f 1		Representative:	M. Hurst
		•		Gro	und Water C	Observations	
				Date	Time	Depth	
				05-12-16	9:50 AN	M None Noted	
		DEI	PTH			CLASSIFI	CATION OF MATERIAL
		С		DEPTH	NOTES		- FINE and 35-50%
		SAM		OF	OR		- MEDIUM some 20-35%
DEPTH	SAMPLE	FROM	ТО	CHANGE	PIT	C ·	- COARSE little 10-20%
(Feet)	NUMBER	(FEET)	(FEET)	(FEET)	PROFILE	Darla Darras Tanaa il	trace 0-10%
0				0.7			and Organic Matter, trace ROOTS
				0.7		(moist, easy digging)	ome SILT, some cmf GRAVEL
						(moist, medium hard	
				2.2		(moist, methani nard	ulgging
						Brown SILT, little CI	AY, little mf SAND (moist,
						medium hard digging)	
						See Remark 3	
				4.2			
							LAY, some cmf SAND, trace cmf
5						GRAVEL (moist, me	dium hard digging)
				6.8		D	
						Brown Similar Soil (w	ret, medium hard digging)
						Bottom of Test Pit @	8 4'
							y 0. 1
10							
REMAR	VC.	1	1	II			

REMARKS:

1. This test pit was excavated by Sherman Vincent utilizing a Case CX80 backhoe equipped with a 24" wide all-purpose bucket.

2. Elevation at grade was estimated to the nearest 0.5 feet utilizing existing contour lines on a Concept Grading Map, labeled L001, provided by HOLT Architects, P.C.

3. Lenses of Clay noted throughout.

				T	EST PI	T LOG			
Project:	Evergreen	Townho	mes at 10	61 Dryden 1	Road	Report No.:	27131B-01-0516		
Ithaca, N	lew York			•		Location of Test Pit:	See Exploration Location Sketch		
Client:	M&R Ent	ities, LLC				Ground Elevation:	1011 ± (See Remark 2)		
						Date	Start: 05-12-16 Finish: 05-12-10		
Test Pit	No. TP-7	7	Sheet 1 of	E 1		Representative:	M. Hurst		
				Gro	und Water O	Observations			
				Date	Time	1			
				05-12-16	10:30 A				
						(See Remark 3)			
		DE	РТН			CLASSIFI	CATION OF MATERIAL		
)F	DEPTH	NOTES		- FINE and 35-50%		
			IPLE	OF	OR	m	- MEDIUM some 20-35%		
DEPTH	SAMPLE	FROM	ТО	CHANGE	PIT	C ·	- COARSE little 10-20%		
(Feet)	NUMBER	(FEET)	(FEET)	(FEET)	PROFILE		trace 0-10%		
0				0.4			and Organic Matter, trace ROOTS		
				0.6		(moist, easy digging)			
							ome cmf GRAVEL, some SILT		
						(moist, medium hard	aigging)		
				2.6					
				2.0		Brown SILT some C	LAY, some cmf SAND, trace mf		
						-	BLES (moist, medium hard		
				4.0		digging)			
							ne SAND, little cmf GRAVEL,		
5							wet, medium hard digging)		
						, ,			
				7.8					
							t, medium hard digging)		
						See Remark 4			
10						Bottom of Test Pit (a) 10 0'		
10 REMAR	IZO					Bottom of Test Pit @	, 10.0		

REMARKS:

1. This test pit was excavated by Sherman Vincent utilizing a Case CX80 backhoe equipped with a 24" wide all-purpose bucket.

2. Elevation at grade was estimated to the nearest 0.5 feet utilizing existing contour lines on a Concept Grading Map, labeled L001, provided by HOLT Architects, P.C.

3. Perched water began seeping in from sides between 2.6' - 7.8'.

4. Small amount of water began to seep into bottom of Test Pit at a very slow rate.

A New York State Certified Woman-Owned Business Enterprise (WBE)

				T.	EST PI	I LOG		
Project:	Evergreen	n Townho	omes at 10	061 Dryden 1	Road	Report No.: 27131B-01-0516		
Ithaca, N	lew York					Location of Test Pit:	See Exploration Location Sketch	
Client:	M&R Ent	ities, LLC				Ground Elevation:	1033.5 ± (See Remark 2)	
						Date	Start: 05-12-16 Finish: 05-12-10	
Test Pit	No. TP-8	3	Sheet 1 of			Representative:	M. Hurst	
					und Water C			
				Date 05-12-16	Time 11:45 A	1		
		DE	PTH			CLASSIFI	CATION OF MATERIAL	
)F	DEPTH	NOTES		- FINE and 35-50%	
		SAM	IPLE	OF	OR	m	- MEDIUM some 20-35%	
DEPTH (Feet)	SAMPLE NUMBER	FROM (FEET)	TO (FEET)	CHANGE (FEET)	PIT PROFILE	c ·	- COARSE little 10-20% trace 0-10%	
0	NUMBER	(PEEI)			TROFILE	Dark Brown Tonsoil	and Organic Matter (moist, easy	
0				0.5		digging)	and organic matter (moist, easy	
						Brown cmf SAND, so	ome SILT, little cmf GRAVEL,	
				2.0			ist, medium hard digging)	
							AY, some cmf SAND, little mf BBLES (moist, medium hard	
						digging)	BLES (moist, medium hard	
						See Remark 3		
						See Remark J		
5								
0								
				6.1				
						Brown Similar Soil (m	noist to wet, medium hard digging)	
10						Bottom of Test Pit @	2 10.0'	
REMAR	KC.	1	1	11				

REMARKS:

1. This test pit was excavated by Sherman Vincent utilizing a Case CX80 backhoe equipped with a 24" wide all-purpose bucket.

2. Elevation at grade was estimated to the nearest 0.5 feet utilizing existing contour lines on a Concept Grading Map, labeled L001, provided by HOLT Architects, P.C.

3. Clay lenses were noted throughout this layer.

Attachment to CME Report No.: 27131B-01-0516 Test Pit Photographs Page 1 of 8

Photographs 1 and 2 (Top): Profiles of Test Pit TP-1. Photograph 3 (Bottom Left): Side Profile of Test Pit TP-1. Photograph 4 (Bottom Right): Spoil Pile from Test Pit TP-1.

Attachment to CME Report No.: 27131B-01-0516 Test Pit Photographs Page 2 of 8

Photographs 5 and 6 (Top): Profiles of Test Pit TP-2. Photograph 7 (Bottom Left): Side Profile of Test Pit TP-2. Photograph 8 (Bottom Right): Spoil Pile from Test Pit TP-2.

Attachment to CME Report No.: 27131B-01-0516 Test Pit Photographs Page 3 of 8

Photographs 9 and 10 (Top): Profiles of Test Pit TP-3. Photograph 11 (Bottom Left): Side Profile of Test Pit TP-3. Photograph 12 (Bottom Right): Spoil Pile from Test Pit TP-3.

Associates, Inc.

Attachment to CME Report No.: 27131B-01-0516 Test Pit Photographs Page 4 of 8

Photographs 13 and 14 (Top): Profiles of Test Pit TP-4. Photograph 15 (Bottom Left): Side Profile of Test Pit TP-4. Photograph 16 (Bottom Right): Spoil Pile from Test Pit TP-4.

Attachment to CME Report No.: 27131B-01-0516 Test Pit Photographs Page 5 of 8

Photographs 17 and 18 (Top): Profiles of Test Pit TP-5. Photograph 19 (Bottom Left): Side Profile of Test Pit TP-5. Photograph 20 (Bottom Right): Spoil Pile from Test Pit TP-5.

Attachment to CME Report No.: 27131B-01-0516 Test Pit Photographs Page 6 of 8

Photographs 21 and 22 (Top): Profiles of Test Pit TP-6. Photograph 23 (Bottom Left): Side Profile of Test Pit TP-6. Photograph 24 (Bottom Right): Spoil Pile from Test Pit TP-6.

Attachment to CME Report No.: 27131B-01-0516 Test Pit Photographs Page 7 of 8

Photographs 25 and 26 (Top): Profiles of Test Pit TP-7. Photographs 27 (Bottom Left): Profile of Test Pit TP-7. At 10:30 AM water began to slowly seep in from sides and bottom of Test Pit. Photograph 28 (Bottom Right): Spoil Pile from Test Pit TP-7.

Attachment to CME Report No.: 27131B-01-0516 Test Pit Photographs Page 8 of 8

Photographs 29 and 30 (Top): Profiles of Test Pit TP-8. Photographs 31 (Bottom Left): Profile of Test Pit TP-8. Photograph 32 (Bottom Right): Spoil Pile from Test Pit TP-8.

GENERAL INFORMATION & KEY TO TEST BORING LOGS

The Subsurface Exploration - Test Boring Logs produced by CME Associates, Inc. present the observations and mechanical data collected by the driller while at the site, supplemented, at times, by classification of the materials removed from the borings as determined through visual identification by technicians in the laboratory. It is cautioned that the materials removed from the borings represent only a fraction of the total volume of the deposits at the site and may not necessarily be representative of the subsurface conditions between adjacent borings or between the sampled intervals. The data presented on the Exploration Logs together with the recovered samples will provide a basis for evaluating the character of the subsurface conditions relative to the proposed construction. The evaluation must consider all the recorded details and their significance relative to each other. Often, analyses of standard boring data indicate the need for additional testing and sampling procedures to more accurately evaluate the subsurface conditions. Any evaluations of the contents of CME's report and the recovered samples must be performed by Licensed Professionals having experience in Soil Mechanics and Foundation Engineering. The information presented in this Key defines some of the procedures and terms used on the CME Exploration Logs to describe the conditions encountered. Refer to the Log on page 3 for key number. Key No.

- 1. The figures in the DEPTH SCALE column define the vertical scale of the Boring Log.
- 2. CASING BLOWS/FOOT shows the number of blows required to advance the casing a distance of 12 inches. The casing size, the hammer weight and the length of drop are noted under the Methods of Investigation. If the casing is advanced by means other than driving, the method of advancement will be indicated under Methods of Investigation at the top of the Log. If Hollow Stem Augers or Coring is used, it will be so noted in this column.
- 3. The SAMPLE I.D. is used for identification on the sample containers and in the Laboratory Test Report or Summary.
- 4. The DEPTH OF SAMPLE column gives the exact depth range from which a sample was recovered.
- 5. The SAMPLE TYPE/RECOVERY column is used to signify the various type of sample attempt. "SS" is Split Spoon, "P" is piston tube, "U" is Undisturbed tube. For soil samples, the recovered length of the sample is also indicated, in inches. If a rock core sample is taken, the core bit size designation is given here.
- 6. BLOWS ON SAMPLER shows the results of the "Standard Penetration Test (SPT) ASTM D1586", recording the number of blows required to drive a split spoon sampler into the soil beneath the casing. The number of blows required for each six inches of penetration is recorded. The total number of blows required for the 6 inch to 18 inch interval is summarized in the SPT "N" column and represents the "Standard Penetration Number". The outside diameter of the sampler, the hammer weight and the length of drop are noted in the Methods of Investigation portion of the log. A "WH" or "WR" in this column indicates that the sample spoon advanced the 6 inch interval under Weight of Hammer or Weight of Rods, respectively.
- 7. The **DEPTH OF CHANGE** column designates the depth (in feet) that the driller noted a compactness or stratum change. In soft materials or soil strata exhibiting a consistent relative density, it is difficult for the driller to determine the exact change from one stratum to the next. In addition, a grading or gradual change may exist. In such cases the depth noted is approximate or estimated only and may be represented by a dashed line.
- 8. CLASSIFICATION OF MATERIAL Soil materials encountered and sampled are described by the driller on the original log. Notes of driller observations are also placed in this column. Recovered samples may also be visually classified by a Soil Technician upon receipt in the Laboratory. Visual sample classification is by Burmister System and strata may be classified additionally by the Unified System. The Burmister System is a type of visual-manual textural classification estimated by the Driller or Technician on the basis of weight-fraction of the recovered soil. See Table 1 "Classification of Materials". The description of the relative soil compactness or consistency is based upon the standard penetration number as defined in Table 2. The description of the soil moisture condition is described as dry, moist, wet, or saturated. Water used to advance the boring may have affected the in-situ moisture content of the sample. Special terms are used as required to describe materials in greater detail, such terms are listed in ASTM D653. When sampling gravelly soils with a standard two-inch O.D. Split Spoon, the true percentage of gravel is often not recovered due to the relatively small sampler diameter. The presence of boulders, cobbles, and large gravel is sometimes, but not necessarily, detected by an evaluation of the casing and sampler blows or through the "action" of the drill rig as reported by the driller.

CME Associates, Inc.

General Information and Key to the Test Boring Logs

8. CLASSIFICATION OF MATERIAL (continued)

The Description of Rock is based upon the recovered rock core. Terms frequently used in the description are included in Table 3. The length of core run is defined as length of penetration between retreivals of the corebarrel from the bore hole, expressed in inches. The core recovery expresses the length of core recovered from the core barrel per core run, in percent. The size core barrel used is noted in Column 5. The more commonly used sizes of core barrels are denoted "AX" and "NX". An "NX" core, being larger in diameter than "AX" core, often produces better recovery, and is frequently utilized where accurate information regarding the geologic conditions and engineering properties is needed. A better estimate of in-situ rock quality is provided by a *modified core recovery ratio* known as the "Rock Quality Designation" (RQD). This ratio is determined by considering only pieces of core that are at least 4 inches long and are hard and sound. Breaks obviously caused by drilling are ignored. The diameter of the core should preferably be not less than 2 inches (NX). The percentage ratio between the total length of such core recovered and the length of core drilled on a given run is the RQD. Table 4 gives the rock quality description as related to the RQD.

- 9. The SPT "N" or RQD is given in this column as applicable to the specific sample taken. In Very Compact coarse grained soils the N-value may be indicated as 50+, and in Hard fine-grained soils the N-value may be indicated as 30+. This typically means that the blow count was achieved prior to driving the sampler the entire 6 inch interval or the sampler refused further penetration. For "NX" rock cores, the RQD is reported here, expressed in percent.
- 10. GROUND WATER OBSERVATIONS and timing noted by the driller are shown in this section. It is important to realize that the reliability of the water level observations depend upon the soil type (water does not readily stabilize in a hole through fine grained soils), and that drill water used to advance the borings may have influenced the observations. Ground water levels typically fluctuate seasonally so those noted on the log are only representative of that exhibited during the period of time noted on the log. One or more perched or trapped water levels may exist in the ground seasonally. All the available readings should be evaluated. If definite conclusions cannot be made, it is often prudent to examine the conditions more thoroughly through test pit excavations or ground water observation well installations.

TABLE 1 - VISUAL C	LASSIFICATION	OFM	ATERIALS	S (BURMISTER)			
GROUP	TEXTURAL CLASSIFICATION SIZES						
BOULDERS	larger than 12" di	larger than 12" diameter					
COBBLES	12" diameter to 3'	' sieve					
GRAVEL	3" - coarse - 1" - 1	nedium	- 1/2" - fin	e - #4 sieve			
SAND	#4 - coarse - #10 -	mediur	n - #40 - fi	ne - #200 sieve			
SILT	#200 sieve (0.074	mm) to	0.005mm s	size (see below *)			
CLAY	0.005mm size to 0).001mn	n size (see	below *)			
ABBREVIATIONS	ABBREVIATIONS PERCENT OF TOTAL SAMPLE BY WEIGH						
f - fine	and 3			35 to 50%			
m - medium	some			20 to 35%			
c - coarse	little		10 to 20%				
	trace		0 to 10%				
*1	LASTICITY DES	SCRIPT	TONS				
TERM	PLASTICITY INDEX		DRY ENGTH	FIELD TEST			
Non-plastic	0 - 3	Ve	ry low	falls apart easily			
Slightly plastic	4 - 15	Slight		easily crushed by fingers			
Plastic	15 - 30	M	edium	difficult to crush			
Highly plastic	31 or more	ł	ligh	impossible to crush with fingers			

GIKTBL/Page 2 of 4/0296 Revision

Primary Soll Type	Descriptive Term of Compactness	Range of Standard Penetration Resistance (N)
COARSE GRAINED SOILS	Very loose	less than 4 blows per foot
	Loose	4 to 10
(More than half of Material is larger than No. 200 sieve size.)	Medium compact	10 to 30
s imper that ito. 200 sieve size.)	Compact	30 to 50
	Very compact	Greater than 50
FINE GRAINED SOILS	Descriptive Term of Consistency	Range of Standard Penetration Resistance (N)
	Very soft	less than 2 blows per foot
(More than half of material	Soft	2 to 4
is smaller than No. 200 sieve	Medium stiff	4 to 8
size.)	Stiff	8 to 15
	Very stiff	15 to 30
	Hard	Greater than 30

"The number of blows of 140 pound weight falling 30 inches to drive 2 inch O.D., 1-3/8 inch I.D. sampler 12 inches is defined as the Standard Penetration Resistance designated "N".

	TABLE 3 - ROCK	CLASSIFICATION TERMS
Rock Class	sification Terms	Field Test or Meaning of Term
Hardness	Soft	Scratched by fingernail
	Medium Hard	Scratched easily by penknife
	Hard	Scratched with difficulty by penknife
	Very Hard	Cannot be scratched by penknife
Weathering	Very Weathered Weathered Sound	Judged from the relative amounts of disintegration, iron staining, core recovery, clay seams, etc.
Bedding (Natural Breaks in Rock Layers)	Laminated Thinly bedded Bedded Thickly bedded Massive	less than 1 inch 1 inch to 4 inches 4 inches to 12 inches 12 inches to 36 inches greater than 36 inches

٠

TABLE 4 Relation of Rock Quality Designation (RQD) and in-situ Rock Quality				
RQD (%)	Rock Quality Term Used			
90 to 100	Excellent			
75 to 90	Good			
50 to 75	Fair			
25 to 50	Poor			
0 to 25	Very Poor			

				BORING NO.: B-	1 Pa	ge 1 of 1	l
SUBSUR	FACE E	XPLORAT	ION - 7	FEST BORING	LOG		
Project:			Report	No.:	····		
Client:			Date St	arted:	Finished	i:	
Location of Boring:			Elevati	on of Surface of Boring	:		
METHODS OF INV	ESTIGATIO	ON		GROUND WATER	OBSERVATIO	ONS	
Casing: 3-1/4" I.D. Hollow Stem Au	ger Hamm	er:	Date	: Time	Depth	Casi	ng At
Other:				While drilling			
Soil Sampler: 2" O.D. Split Barrel	Rod Size	:		Before casing remo	oved		
Sampler Hammer: Wt. 140 lbs. F	all: 30 in.			After casing remov	ed		
Make & Model of Drill Rig:							·····
LOG OF BORING	SAMPLES	3		CLASSIFICATION	OF MATERL	AL	
Depth Casing Depth of Scale Blows/ Sample Sample (Feet) (Feet) Foot I.D. From To	Sample Type/ Recovery (inches)	Blows on Sampler Per 6 inches	Depth of Change (feet)	f - fine m - medium c - coarse	and - 35 some - 20 little - 10 trace - 0 t	to 20%	STP "N" or RQD
1 2 3 4 4	5	6	7		8		9

Denotes Key Number (see page 1)

GIKTBL/Page 4 of 4/0296 Revision

÷

Extreme Precipitation Tables

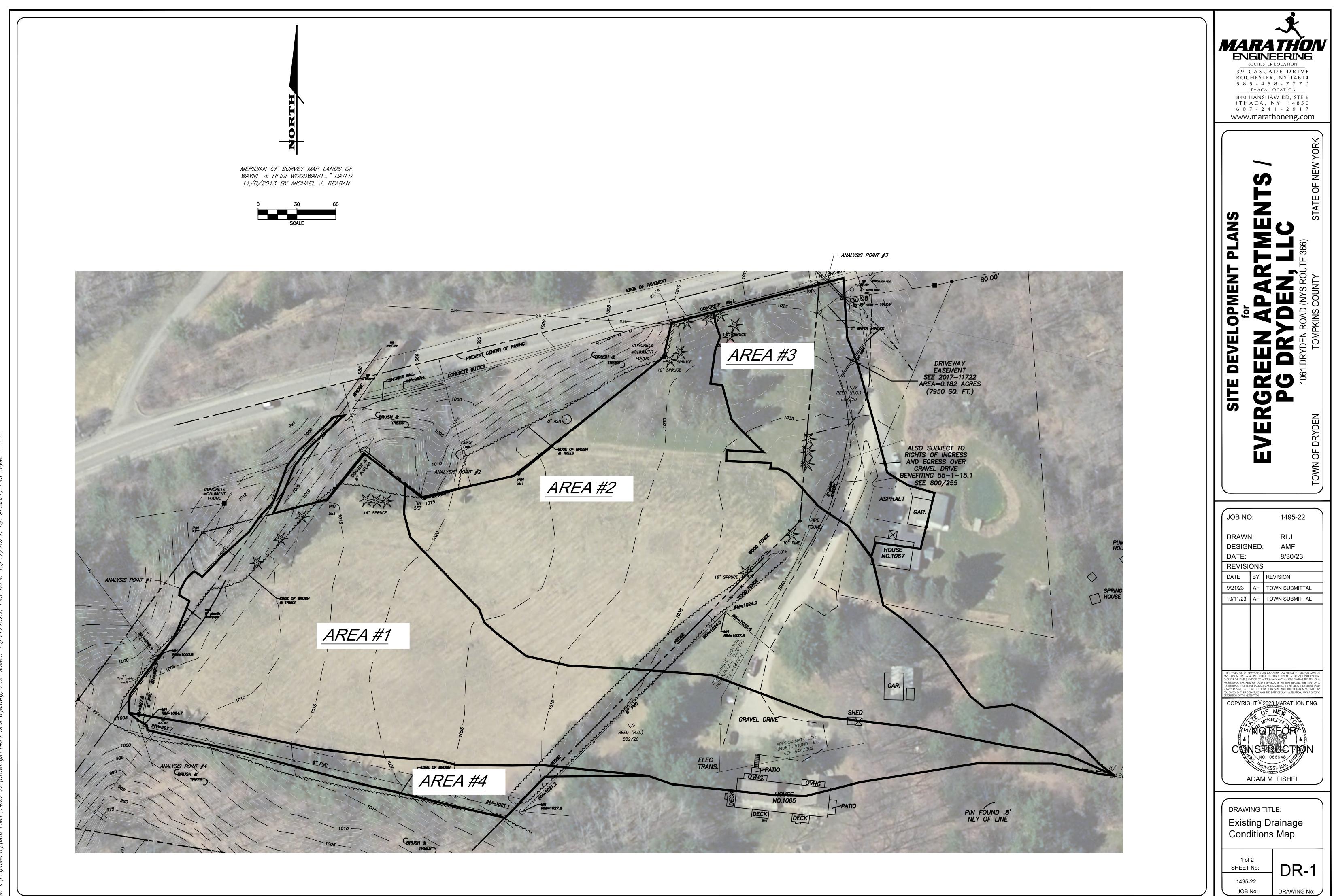
Northeast Regional Climate Center

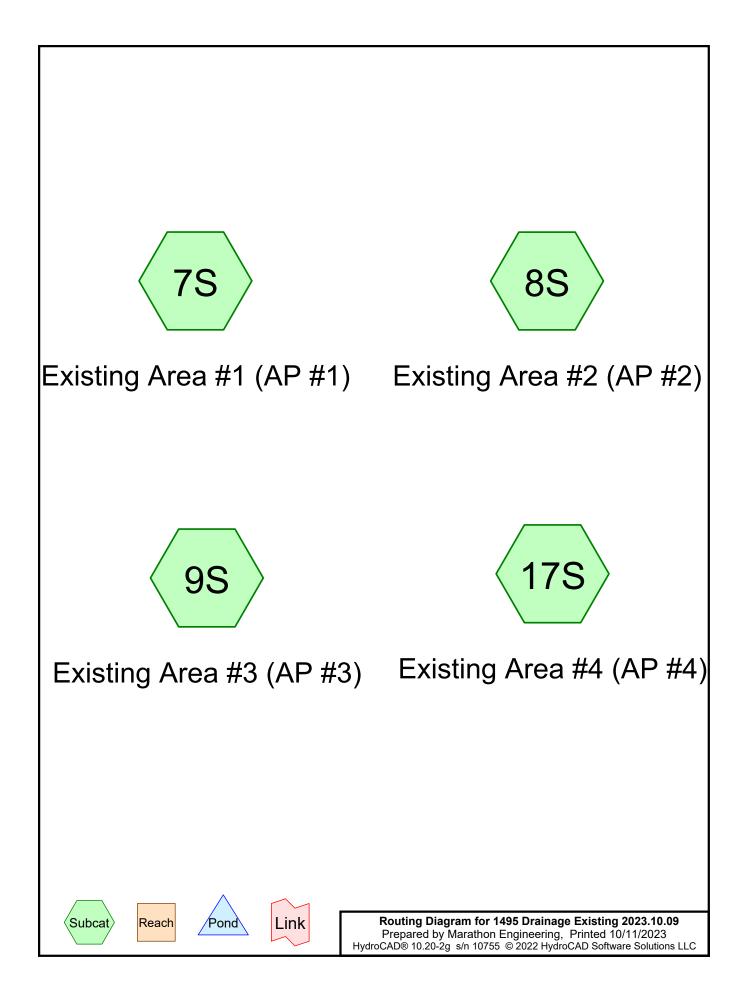
Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	New York
Location	
Longitude	76.431 degrees West
Latitude	42.459 degrees North
Elevation	0 feet
Date/Time	Mon, 30 Jan 2023 14:47:33 -0500

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.28	0.43	0.53	0.70	0.87	1.07	1yr	0.75	0.95	1.21	1.45	1.71	2.01	2.27	1yr	1.78	2.18	2.58	3.12	3.58	1yr
2yr	0.32	0.50	0.62	0.81	1.02	1.26	2yr	0.88	1.12	1.43	1.70	2.01	2.34	2.61	2yr	2.08	2.51	2.94	3.50	4.00	2yr
5yr	0.38	0.59	0.74	0.99	1.26	1.57	5yr	1.09	1.39	1.78	2.13	2.50	2.91	3.25	5yr	2.58	3.13	3.63	4.22	4.83	5yr
10yr	0.42	0.66	0.84	1.14	1.48	1.85	10yr	1.28	1.63	2.11	2.52	2.96	3.44	3.83	10yr	3.04	3.68	4.26	4.86	5.57	10yr
25yr	0.50	0.79	1.00	1.38	1.84	2.31	25yr	1.58	2.02	2.64	3.15	3.70	4.27	4.77	25yr	3.78	4.58	5.27	5.86	6.72	25yr
50yr	0.56	0.90	1.15	1.60	2.16	2.73	50yr	1.86	2.38	3.12	3.73	4.38	5.04	5.62	50yr	4.46	5.41	6.19	6.76	7.76	50yr
100yr	0.63	1.01	1.31	1.86	2.53	3.23	100yr	2.19	2.80	3.70	4.43	5.18	5.95	6.64	100yr	5.26	6.38	7.27	7.79	8.95	100yr
200yr	0.72	1.17	1.51	2.16	2.98	3.82	200yr	2.58	3.30	4.39	5.25	6.12	7.02	7.84	200yr	6.21	7.54	8.54	8.98	10.33	200yr
500yr	0.85	1.39	1.82	2.64	3.70	4.77	500yr	3.19	4.11	5.49	6.57	7.65	8.75	9.77	500yr	7.74	9.39	10.58	10.85	12.50	500yr


Lower Confidence Limits


	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.25	0.39	0.48	0.64	0.79	0.83	1yr	0.68	0.81	0.96	1.07	1.51	1.84	2.12	1yr	1.62	2.04	2.42	2.96	3.27	1yr
2yr	0.32	0.49	0.61	0.82	1.01	1.12	2yr	0.87	1.09	1.24	1.53	1.86	2.29	2.55	2yr	2.02	2.45	2.87	3.43	3.93	2yr
5yr	0.36	0.56	0.69	0.95	1.20	1.32	5yr	1.04	1.29	1.44	1.78	2.17	2.72	3.04	5yr	2.41	2.92	3.41	4.00	4.60	5yr
10yr	0.40	0.61	0.76	1.06	1.37	1.50	10yr	1.19	1.47	1.63	1.99	2.46	3.12	3.46	10yr	2.77	3.33	3.87	4.49	5.18	10yr
25yr	0.46	0.70	0.87	1.24	1.63	1.79	25yr	1.41	1.75	1.92	2.29	2.85	3.70	4.11	25yr	3.28	3.95	4.57	5.22	6.06	25yr
50yr	0.50	0.77	0.96	1.38	1.85	2.04	50yr	1.60	1.99	2.17	2.56	3.21	4.24	4.66	50yr	3.75	4.48	5.17	5.86	6.83	50yr
100yr	0.56	0.85	1.06	1.53	2.10	2.33	100yr	1.81	2.28	2.45	2.85	3.61	4.83	5.29	100yr	4.28	5.09	5.85	6.58	7.69	100yr
200yr	0.62	0.94	1.19	1.72	2.40	2.67	200yr	2.07	2.61	2.79	3.17	4.06	5.51	6.01	200yr	4.88	5.78	6.61	7.36	8.66	200yr
500yr	0.74	1.10	1.41	2.05	2.92	3.21	500yr	2.52	3.13	3.30	3.67	4.74	6.56	7.09	500yr	5.81	6.82	7.75	8.56	10.15	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.30	0.47	0.57	0.77	0.94	1.03	1yr	0.81	1.01	1.16	1.44	1.77	2.16	2.39	1yr	1.91	2.30	2.73	3.27	3.77	1yr
2yr	0.34	0.52	0.64	0.87	1.07	1.18	2yr	0.93	1.16	1.31	1.63	1.99	2.41	2.70	2yr	2.14	2.60	3.03	3.59	4.10	2yr
5yr	0.40	0.62	0.76	1.05	1.34	1.53	5yr	1.15	1.49	1.68	2.06	2.53	3.11	3.46	5yr	2.75	3.33	3.85	4.45	5.08	5yr
10yr	0.46	0.71	0.88	1.23	1.59	1.86	10yr	1.37	1.81	2.04	2.47	3.07	3.77	4.19	10yr	3.34	4.03	4.64	5.25	6.00	10yr
25yr	0.56	0.86	1.07	1.52	2.01	2.41	25yr	1.73	2.36	2.63	3.15	3.95	4.87	5.40	25yr	4.31	5.20	5.93	6.53	7.46	25yr
50yr	0.66	1.00	1.25	1.79	2.41	2.93	50yr	2.08	2.86	3.19	3.80	4.80	5.92	6.55	50yr	5.24	6.30	7.16	7.71	8.81	50yr
100yr	0.77	1.16	1.45	2.10	2.87	3.56	100yr	2.48	3.48	3.86	4.59	5.80	7.19	7.94	100yr	6.36	7.64	8.65	9.13	10.40	100yr
200yr	0.89	1.34	1.70	2.46	3.43	4.34	200yr	2.96	4.24	4.69	5.53	7.03	8.74	9.64	200yr	7.74	9.27	10.47	10.78	12.28	200yr
500yr	1.09	1.63	2.09	3.04	4.32	5.61	500yr	3.73	5.49	6.04	7.06	9.09	11.33	12.48	500yr	10.03	12.00	13.50	13.46	15.30	500yr

Ever	nt#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
		Name				(hours)		(inches)	
	1	1-Year	Type II 24-hr		Default	24.00	1	2.01	2
	2	2-Year	Type II 24-hr		Default	24.00	1	2.34	2
	3	10-Year	Type II 24-hr		Default	24.00	1	3.44	2
	4	100-Year	Type II 24-hr		Default	24.00	1	5.95	2

Rainfall Events Listing

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
1.455	80	>75% Grass cover, Good, HSG D (7S, 8S, 9S)
3.165	78	Meadow, non-grazed, HSG D (7S, 8S, 17S)
0.546	98	Paved parking, HSG D (7S, 8S, 9S)
1.812	79	Woods, Fair, HSG D (7S, 8S, 17S)
6.979	80	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
6.979	HSG D	7S, 8S, 9S, 17S
0.000	Other	
6.979		TOTAL AREA

Printed 10/11/2023 Page 5

 HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchmen Numbers
0.000	0.000	0.000	1.455	0.000	1.455	>75% Grass cover, Good	7S, 8S, 9S
0.000	0.000	0.000	3.165	0.000	3.165	Meadow, non-grazed	7S, 8S, 17S
0.000	0.000	0.000	0.546	0.000	0.546	Paved parking	7S, 8S, 9S
0.000	0.000	0.000	1.812	0.000	1.812	Woods, Fair	7S, 8S, 17S
0.000	0.000	0.000	6.979	0.000	6.979	TOTAL AREA	

Ground Covers (all nodes)

Time span=0.00-50.00 hrs, dt=0.01 hrs, 5001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

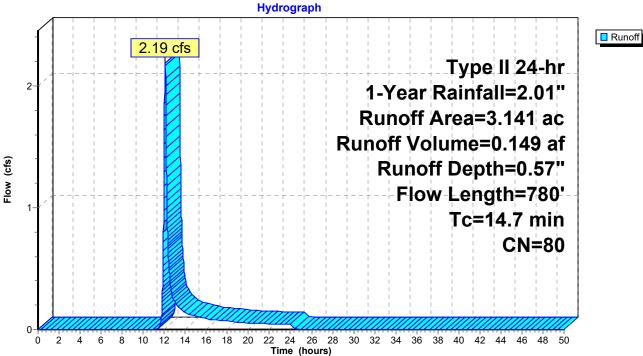
Subcatchment 7S: Existing Area #1 (AP #1) Runoff Area=3.141 ac 5.41% Impervious Runoff Depth=0.57" Flow Length=780' Tc=14.7 min CN=80 Runoff=2.19 cfs 0.149 af

Subcatchment 8S: Existing Area #2 (AP #2) Runoff Area=121,182 sf 4.48% Impervious Runoff Depth=0.53" Flow Length=780' Tc=14.7 min CN=79 Runoff=1.77 cfs 0.122 af

Subcatchment9S: Existing Area #3 (AP #3) Runoff Area=33,140 sf 33.04% Impervious Runoff Depth=0.86" Tc=6.0 min CN=86 Runoff=1.17 cfs 0.054 af

Subcatchment 17S: Existing Area #4 (AP #4) Runoff Area=12,845 sf 0.00% Impervious Runoff Depth=0.53" Flow Length=486' Slope=0.0730 '/' Tc=22.0 min CN=79 Runoff=0.15 cfs 0.013 af

> Total Runoff Area = 6.979 ac Runoff Volume = 0.339 af Average Runoff Depth = 0.58" 92.18% Pervious = 6.433 ac 7.82% Impervious = 0.546 ac

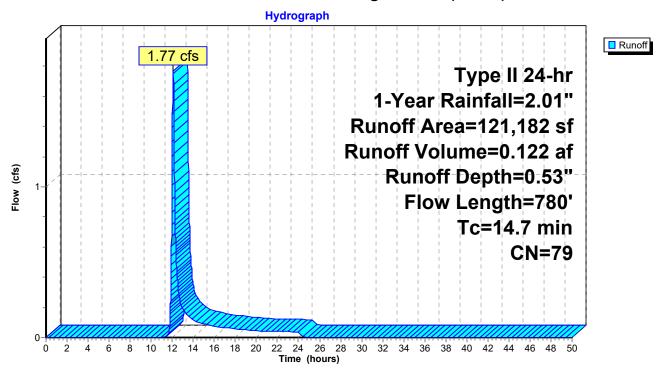

Summary for Subcatchment 7S: Existing Area #1 (AP #1)

2.19 cfs @ 12.08 hrs, Volume= 0.149 af, Depth= 0.57" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.01"

	Area	(ac)	CN De	scription		
	0.	815	79 Wo	ods, Fair, F	ISG D	
	0.	717	80 >7	5% Grass c	over, Good	, HSG D
	1.	439	78 Me	adow, non-	grazed, HS	G D
	0.	170	98 Pa	ved parking	, HSG D	
	3.	141	80 We	ighted Ave	rage	
	2.	971	94.	59% Pervic	us Area	
	0.	170	5.4	1% Impervi	ous Area	
	Тс	Length			Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	12.6	150	0.2500	0.20		Sheet Flow, Sheet Flow
						Woods: Light underbrush n= 0.400 P2= 2.34"
	2.1	630	0.0950	4.96		Shallow Concentrated Flow, Shallow Conc.
_						Unpaved Kv= 16.1 fps
	14.7	780	Total			

Subcatchment 7S: Existing Area #1 (AP #1)

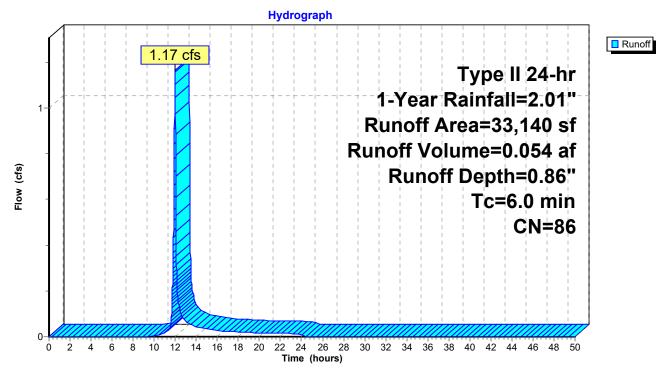

Summary for Subcatchment 8S: Existing Area #2 (AP #2)

Runoff = 1.77 cfs @ 12.08 hrs, Volume= 0.122 af, Depth= 0.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.01"

A	rea (sf)	CN E	Description									
	36,315	79 V	Voods, Fai	r, HSG D								
	9,941	80 >	75% Gras	s cover, Go	ood, HSG D							
	69,496	78 N	leadow, no	on-grazed,	HSG D							
	5,430	98 F	aved park	ved parking, HSG D								
1	21,182	79 V	Veighted A	verage								
1	15,752	9	5.52% Per	vious Area								
	5,430	4	.48% Impe	ervious Area	а							
Тс	Length	Slope	Velocity	Capacity	Description							
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)								
12.6	150	0.2500	0.20		Sheet Flow, Sheet Flow							
					Woods: Light underbrush n= 0.400 P2= 2.34"							
2.1	630	0.0950	4.96		Shallow Concentrated Flow, Shallow Conc.							
					Unpaved Kv= 16.1 fps							
14.7	780	Total										

Subcatchment 8S: Existing Area #2 (AP #2)

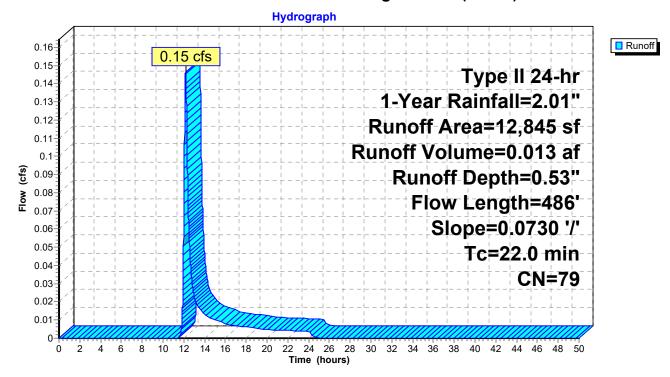

Summary for Subcatchment 9S: Existing Area #3 (AP #3)

Runoff = 1.17 cfs @ 11.98 hrs, Volume= 0.054 af, Depth= 0.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.01"

_	A	rea (sf)	CN	Description								
		22,192	80	>75% Grass cover, Good, HSG D								
_		10,948	98	Paved parki	ng, HSG D							
		33,140	86	Weighted Av	Veighted Average							
		22,192		66.96% Per	vious Area							
		10,948		33.04% Imp	ervious Are	a						
	т.	المربع مراجع	01.000	Valasita.	0	Description						
	ŢĊ	Length	Slope		Capacity	Description						
_	(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)							
_	5.0					Direct Entry,						
	5.0	0	Total,	Increased to	o minimum	Tc = 6.0 min						

Subcatchment 9S: Existing Area #3 (AP #3)


Summary for Subcatchment 17S: Existing Area #4 (AP #4)

Runoff = 0.15 cfs @ 12.17 hrs, Volume= 0.013 af, Depth= 0.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.01"

A	rea (sf)	CN E	Description								
	7,136	79 V	Voods, Fai	r, HSG D							
	5,709	78 N	leadow, no	on-grazed,	HSG D						
	12,845	79 V	Veighted A	eighted Average							
	12,845	1	00.00% Pe	ervious Are	а						
Тс	Length	Slope	Velocity	Capacity	Description						
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)							
20.7	150	0.0730	0.12		Sheet Flow, Sheet Flow						
					Woods: Light underbrush n= 0.400 P2= 2.34"						
1.3	336	0.0730	4.35		Shallow Concentrated Flow, Shallow Conc.						
					Unpaved Kv= 16.1 fps						
22.0	486	Total									

Subcatchment 17S: Existing Area #4 (AP #4)

Time span=0.00-50.00 hrs, dt=0.01 hrs, 5001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

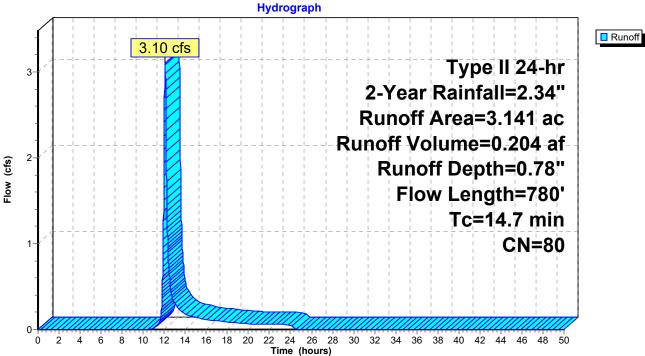
Subcatchment 7S: Existing Area #1 (AP #1) Runoff Area=3.141 ac 5.41% Impervious Runoff Depth=0.78" Flow Length=780' Tc=14.7 min CN=80 Runoff=3.10 cfs 0.204 af

Subcatchment 8S: Existing Area #2 (AP #2) Runoff Area=121,182 sf 4.48% Impervious Runoff Depth=0.73" Flow Length=780' Tc=14.7 min CN=79 Runoff=2.55 cfs 0.170 af

Subcatchment9S: Existing Area #3 (AP #3) Runoff Area=33,140 sf 33.04% Impervious Runoff Depth=1.11" Tc=6.0 min CN=86 Runoff=1.52 cfs 0.071 af

Subcatchment 17S: Existing Area #4 (AP #4) Runoff Area=12,845 sf 0.00% Impervious Runoff Depth=0.73" Flow Length=486' Slope=0.0730 '/' Tc=22.0 min CN=79 Runoff=0.21 cfs 0.018 af

> Total Runoff Area = 6.979 ac Runoff Volume = 0.463 af Average Runoff Depth = 0.80" 92.18% Pervious = 6.433 ac 7.82% Impervious = 0.546 ac


Summary for Subcatchment 7S: Existing Area #1 (AP #1)

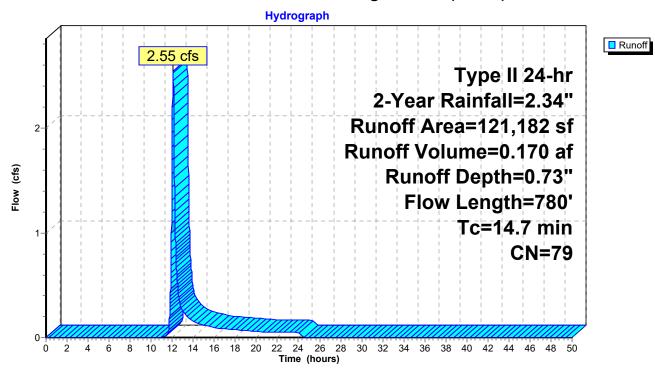
3.10 cfs @ 12.07 hrs, Volume= 0.204 af, Depth= 0.78" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=2.34"

Area	(ac) C	N Des	cription		
0.	815	79 Woo	ods, Fair, H	ISG D	
0.	717	80 >75°	% Grass co	over, Good	, HSG D
1.	439	78 Mea	dow, non-g	grazed, HS	G D
0.	170	98 Pave	ed parking	HSG D	
3.	141	80 Weig	ghted Aver	age	
2.	.971	94.5	9% Pervio	us Area	
0.	.170	5.41	% Impervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.6	150	0.2500	0.20		Sheet Flow, Sheet Flow
2.1	630	0.0950	4.96		Woods: Light underbrush n= 0.400 P2= 2.34" Shallow Concentrated Flow, Shallow Conc. Unpaved Kv= 16.1 fps
14.7	780	Total			

Subcatchment 7S: Existing Area #1 (AP #1)

HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions LLC


Summary for Subcatchment 8S: Existing Area #2 (AP #2)

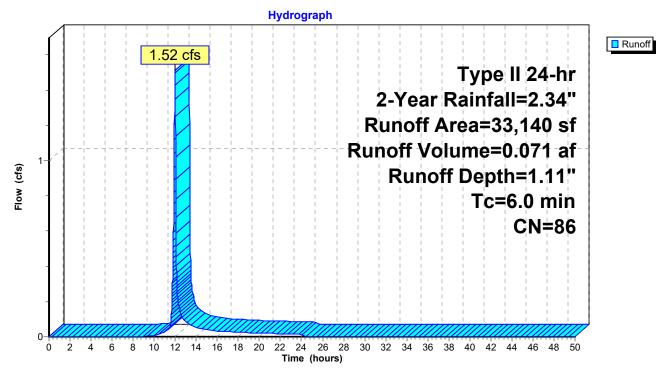
Runoff = 2.55 cfs @ 12.08 hrs, Volume= 0.170 af, Depth= 0.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=2.34"

A	rea (sf)	CN E	I Description					
36,315 79 Woods, Fair, HSG D								
9,941 80 >75% Grass cover, Go					ood, HSG D			
69,496 78 Meadow, non-grazed, H					HSG D			
5,430 98 Paved parking, HSG D								
1	121,182 79 V			Weighted Average				
1	115,752		95.52% Pervious Area					
5,430 4.48% Impervious Are				ervious Area	а			
Тс	Length	Slope	Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
12.6	150	0.2500	0.20		Sheet Flow, Sheet Flow			
					Woods: Light underbrush n= 0.400 P2= 2.34"			
2.1	630	0.0950	4.96		Shallow Concentrated Flow, Shallow Conc.			
					Unpaved Kv= 16.1 fps			
14.7	780	Total						

Subcatchment 8S: Existing Area #2 (AP #2)

HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions LLC

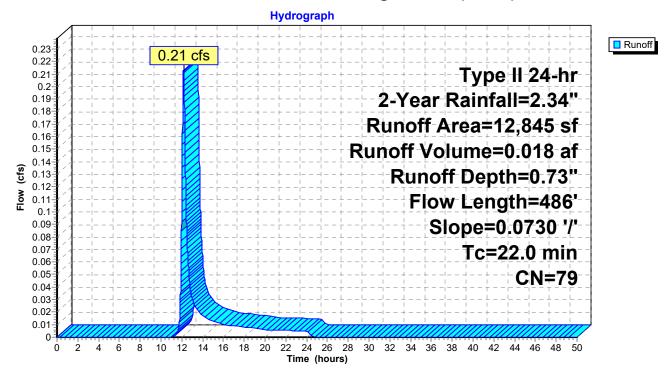

Summary for Subcatchment 9S: Existing Area #3 (AP #3)

Runoff = 1.52 cfs @ 11.97 hrs, Volume= 0.071 af, Depth= 1.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=2.34"

_	A	rea (sf)	CN Description							
		22,192	80	80 >75% Grass cover, Good, HSG D						
_		10,948	98	B Paved parking, HSG D						
		33,140	86	86 Weighted Average						
		22,192	66.96% Pervious Area							
		10,948	33.04% Impervious Area							
	т.	المربع مراجع	01.000	Valasita.	0	Description				
	ŢĊ	Length	Slope		Capacity	Description				
_	(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)					
_	5.0					Direct Entry,				
	5.0	0	Total,	Increased to	o minimum	Tc = 6.0 min				

Subcatchment 9S: Existing Area #3 (AP #3)


Summary for Subcatchment 17S: Existing Area #4 (AP #4)

Runoff = 0.21 cfs @ 12.17 hrs, Volume= 0.018 af, Depth= 0.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=2.34"

A	rea (sf)	CN E	Description					
	7,136	79 V	Voods, Fai	r, HSG D				
	5,709	78 N	Meadow, non-grazed, HSG D					
	12,845	79 V	Veighted A	verage				
12,845 100.00% Pervious Area					а			
Тс	Length	Slope	Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
20.7	150	0.0730	0.12		Sheet Flow, Sheet Flow			
					Woods: Light underbrush n= 0.400 P2= 2.34"			
1.3	336	0.0730	4.35		Shallow Concentrated Flow, Shallow Conc.			
					Unpaved Kv= 16.1 fps			
22.0	486	Total						

Subcatchment 17S: Existing Area #4 (AP #4)

Time span=0.00-50.00 hrs, dt=0.01 hrs, 5001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

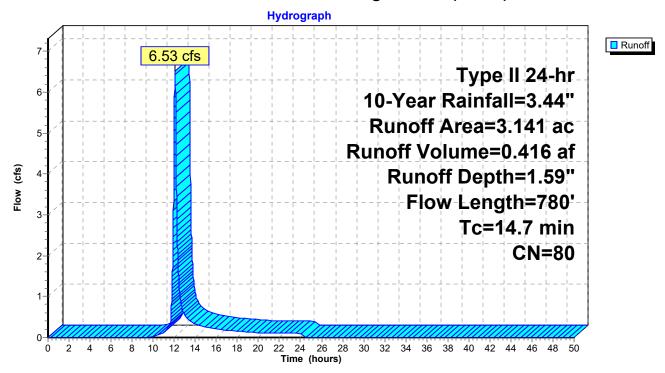
Subcatchment 7S: Existing Area #1 (AP #1) Runoff Area=3.141 ac 5.41% Impervious Runoff Depth=1.59" Flow Length=780' Tc=14.7 min CN=80 Runoff=6.53 cfs 0.416 af

Subcatchment 8S: Existing Area #2 (AP #2) Runoff Area=121,182 sf 4.48% Impervious Runoff Depth=1.52" Flow Length=780' Tc=14.7 min CN=79 Runoff=5.52 cfs 0.352 af

Subcatchment 9S: Existing Area #3 (AP #3) Runoff Area=33,140 sf 33.04% Impervious Runoff Depth=2.05" Tc=6.0 min CN=86 Runoff=2.74 cfs 0.130 af

Subcatchment17S: Existing Area #4 (AP #4) Runoff Area=12,845 sf 0.00% Impervious Runoff Depth=1.52" Flow Length=486' Slope=0.0730 '/' Tc=22.0 min CN=79 Runoff=0.47 cfs 0.037 af

> Total Runoff Area = 6.979 ac Runoff Volume = 0.935 af Average Runoff Depth = 1.61" 92.18% Pervious = 6.433 ac 7.82% Impervious = 0.546 ac

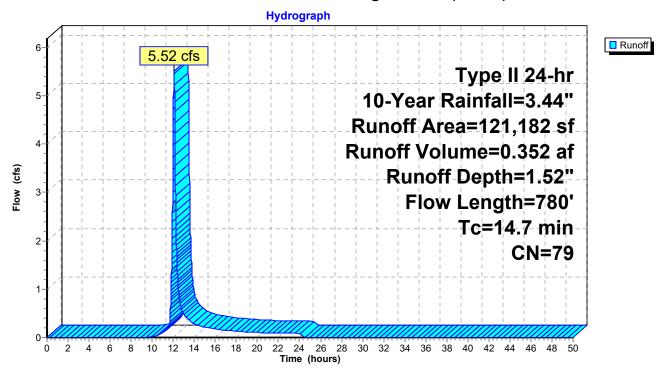

Summary for Subcatchment 7S: Existing Area #1 (AP #1)

Runoff = 6.53 cfs @ 12.07 hrs, Volume= 0.416 af, Depth= 1.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.44"

 Area	(ac) (CN Des	cription										
0.	815	79 Woo	ods, Fair, ⊦	ISG D									
0.	717	80 >75	5% Grass cover, Good, HSG D										
1.	439	78 Mea	Meadow, non-grazed, HSG D										
 0.170 98 Paved parking, HSG D													
3.141 80 Weighted Average													
2.	971	94.5	59% Pervio	us Area									
0.	170	5.41	% Impervi	ous Area									
Tc	Length	Slope	Velocity	Capacity	Description								
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)									
12.6	150	0.2500	0.20		Sheet Flow, Sheet Flow								
					Woods: Light underbrush n= 0.400 P2= 2.34"								
2.1	630	0.0950	4.96		Shallow Concentrated Flow, Shallow Conc.								
					Unpaved Kv= 16.1 fps								
14.7	780	Total											

Subcatchment 7S: Existing Area #1 (AP #1)

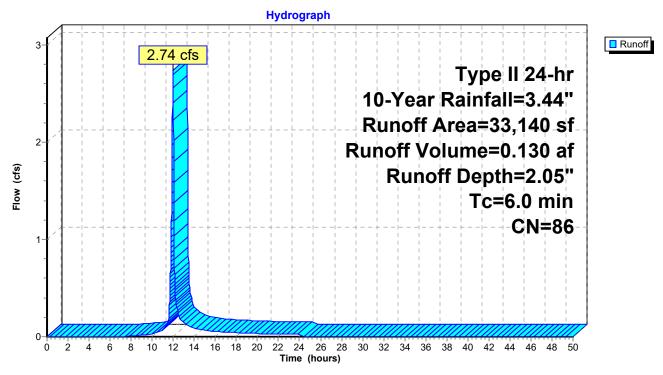

Summary for Subcatchment 8S: Existing Area #2 (AP #2)

Runoff = 5.52 cfs @ 12.07 hrs, Volume= 0.352 af, Depth= 1.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.44"

A	rea (sf)	CN E	Description									
	36,315	79 V	Woods, Fair, HSG D									
	9,941	80 >	75% Gras	75% Grass cover, Good, HSG D								
	69,496	78 N	leadow, no	eadow, non-grazed, HSG D								
	5,430	98 F	aved park	ved parking, HSG D								
1	121,182 79 Weighted Average											
1	15,752	9	5.52% Per	vious Area								
	5,430	4	.48% Impe	ervious Area	а							
Тс	Length	Slope	Velocity	Capacity	Description							
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
12.6	150	0.2500	0.20		Sheet Flow, Sheet Flow							
					Woods: Light underbrush n= 0.400 P2= 2.34"							
2.1	630	0.0950	4.96		Shallow Concentrated Flow, Shallow Conc.							
					Unpaved Kv= 16.1 fps							
14.7	780	Total										

Subcatchment 8S: Existing Area #2 (AP #2)

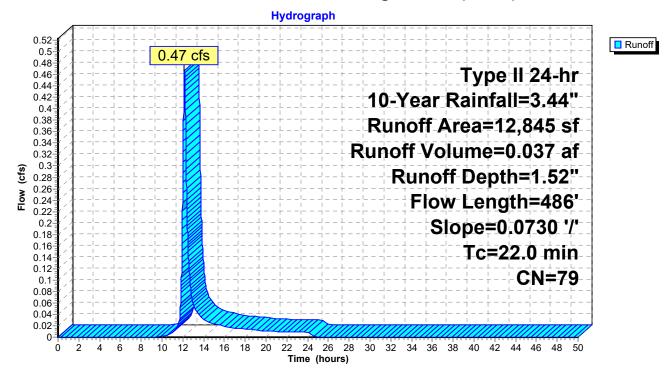

Summary for Subcatchment 9S: Existing Area #3 (AP #3)

Runoff = 2.74 cfs @ 11.97 hrs, Volume= 0.130 af, Depth= 2.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.44"

Area (sf)	CN	Description								
22,192	80	30 >75% Grass cover, Good, HSG D								
10,948	98	Paved parking, HSG D								
33,140	86	Weighted Average								
22,192		66.96% Pervious Area								
10,948		33.04% Impervious Area								
-										
Tc Length										
(min) (feet) (ft/	ft) (ft/sec) (cfs)								
5.0		Direct Entry,								
5.0 0	Total	, Increased to minimum Tc = 6.0 min								

Subcatchment 9S: Existing Area #3 (AP #3)


Summary for Subcatchment 17S: Existing Area #4 (AP #4)

Runoff = 0.47 cfs @ 12.15 hrs, Volume= 0.037 af, Depth= 1.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.44"

A	rea (sf)	CN E	Description									
	7,136	79 V										
	5,709	78 N	3 Meadow, non-grazed, HSG D									
	12,845 79 Weighted Average											
	12,845	1	00.00% Pe	ervious Are	а							
Тс	Length	Slope	Velocity	Capacity	Description							
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)								
20.7	150	0.0730	0.12		Sheet Flow, Sheet Flow							
					Woods: Light underbrush n= 0.400 P2= 2.34"							
1.3	336	0.0730	4.35		Shallow Concentrated Flow, Shallow Conc.							
					Unpaved Kv= 16.1 fps							
22.0	486	Total										

Subcatchment 17S: Existing Area #4 (AP #4)

Time span=0.00-50.00 hrs, dt=0.01 hrs, 5001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

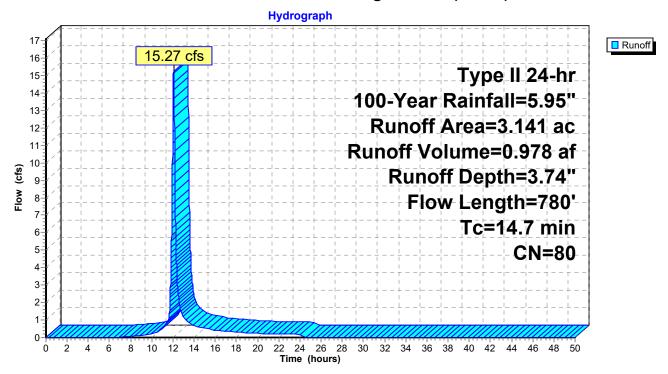
Subcatchment 7S: Existing Area #1 (AP #1) Runoff Area=3.141 ac 5.41% Impervious Runoff Depth=3.74" Flow Length=780' Tc=14.7 min CN=80 Runoff=15.27 cfs 0.978 af

Subcatchment8S: Existing Area #2 (AP #2) Runoff Area=121,182 sf 4.48% Impervious Runoff Depth=3.64" Flow Length=780' Tc=14.7 min CN=79 Runoff=13.19 cfs 0.843 af

Subcatchment9S: Existing Area #3 (AP #3) Runoff Area=33,140 sf 33.04% Impervious Runoff Depth=4.36" Tc=6.0 min CN=86 Runoff=5.62 cfs 0.277 af

Subcatchment 17S: Existing Area #4 (AP #4) Runoff Area=12,845 sf 0.00% Impervious Runoff Depth=3.64" Flow Length=486' Slope=0.0730 '/' Tc=22.0 min CN=79 Runoff=1.13 cfs 0.089 af

> Total Runoff Area = 6.979 ac Runoff Volume = 2.187 af Average Runoff Depth = 3.76" 92.18% Pervious = 6.433 ac 7.82% Impervious = 0.546 ac

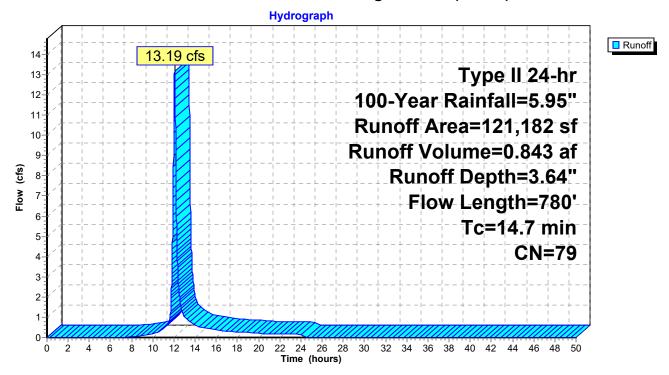

Summary for Subcatchment 7S: Existing Area #1 (AP #1)

Runoff = 15.27 cfs @ 12.07 hrs, Volume= 0.978 af, Depth= 3.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.95"

 Area	(ac) (CN Des	cription										
0.	815	79 Woo	ods, Fair, ⊦	ISG D									
0.	717	80 >75	5% Grass cover, Good, HSG D										
1.	439	78 Mea	Meadow, non-grazed, HSG D										
 0.170 98 Paved parking, HSG D													
3.141 80 Weighted Average													
2.	971	94.5	59% Pervio	us Area									
0.	170	5.41	% Impervi	ous Area									
Tc	Length	Slope	Velocity	Capacity	Description								
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)									
12.6	150	0.2500	0.20		Sheet Flow, Sheet Flow								
					Woods: Light underbrush n= 0.400 P2= 2.34"								
2.1	630	0.0950	4.96		Shallow Concentrated Flow, Shallow Conc.								
					Unpaved Kv= 16.1 fps								
14.7	780	Total											

Subcatchment 7S: Existing Area #1 (AP #1)

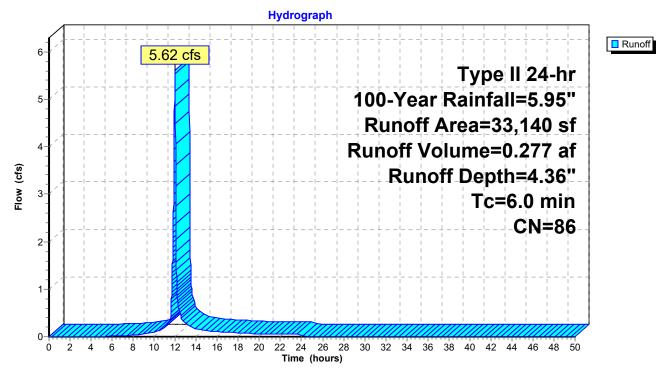

Summary for Subcatchment 8S: Existing Area #2 (AP #2)

Runoff = 13.19 cfs @ 12.07 hrs, Volume= 0.843 af, Depth= 3.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.95"

A	rea (sf)	CN E	Description									
	36,315	79 V	Woods, Fair, HSG D									
	9,941	80 >	75% Gras	75% Grass cover, Good, HSG D								
	69,496	78 N	leadow, no	eadow, non-grazed, HSG D								
	5,430	98 F	aved park	ived parking, HSG D								
1	121,182 79 Weighted Average											
1	15,752	g	5.52% Per	vious Area								
	5,430	4	.48% Impe	ervious Area	а							
Тс	Length	Slope	Velocity	Capacity	Description							
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)								
12.6	150	0.2500	0.20		Sheet Flow, Sheet Flow							
					Woods: Light underbrush n= 0.400 P2= 2.34"							
2.1	630	0.0950	4.96		Shallow Concentrated Flow, Shallow Conc.							
					Unpaved Kv= 16.1 fps							
14.7	780	Total										

Subcatchment 8S: Existing Area #2 (AP #2)

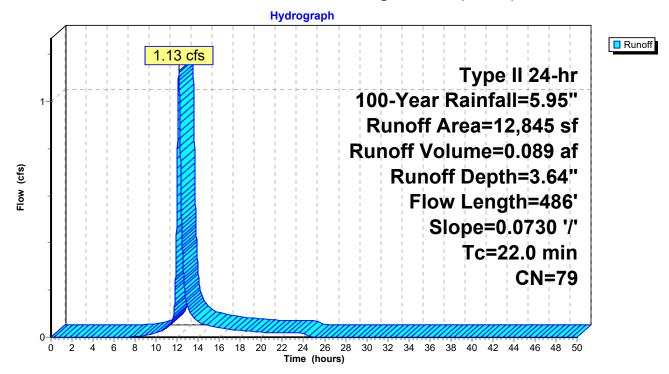

Summary for Subcatchment 9S: Existing Area #3 (AP #3)

Runoff = 5.62 cfs @ 11.97 hrs, Volume= 0.277 af, Depth= 4.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.95"

Α	rea (sf)	CN [Description								
	22,192	80 >	0 >75% Grass cover, Good, HSG D								
	10,948	98 F	Paved parking, HSG D								
	33,140 86 Weighted Average										
	22,192	6	6.96% Per	vious Area	3						
	10,948	3	33.04% Imp	pervious Are	rea						
т.	1	0	\/_l!t.	O an a site i	Description						
Tc	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
5.0					Direct Entry,						
5.0	0	Total,	Increased t	o minimum	n Tc = 6.0 min						

Subcatchment 9S: Existing Area #3 (AP #3)


Summary for Subcatchment 17S: Existing Area #4 (AP #4)

Runoff = 1.13 cfs @ 12.15 hrs, Volume= 0.089 af, Depth= 3.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.95"

	Area (sf)	CN [Description									
	7,136	79 V										
	5,709	78 N										
	12,845 79 Weighted Average											
	12,845	1	00.00% Pe	ervious Are	а							
To		Slope		Capacity	Description							
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)								
20.7	150	0.0730	0.12		Sheet Flow, Sheet Flow							
					Woods: Light underbrush n= 0.400 P2= 2.34"							
1.3	336	0.0730	4.35		Shallow Concentrated Flow, Shallow Conc.							
					Unpaved Kv= 16.1 fps							
22.0	486	Total										

Subcatchment 17S: Existing Area #4 (AP #4)

TABLE OF CONTENTS

Project Reports

- 1 Routing Diagram
- 2 Rainfall Events Listing
- 3 Area Listing (all nodes)
- 4 Soil Listing (all nodes)
- 5 Ground Covers (all nodes)

1-Year Event

- 6 Node Listing
- 7 Subcat 7S: Existing Area #1 (AP #1)
- 8 Subcat 8S: Existing Area #2 (AP #2)
- 9 Subcat 9S: Existing Area #3 (AP #3)
- 10 Subcat 17S: Existing Area #4 (AP #4)

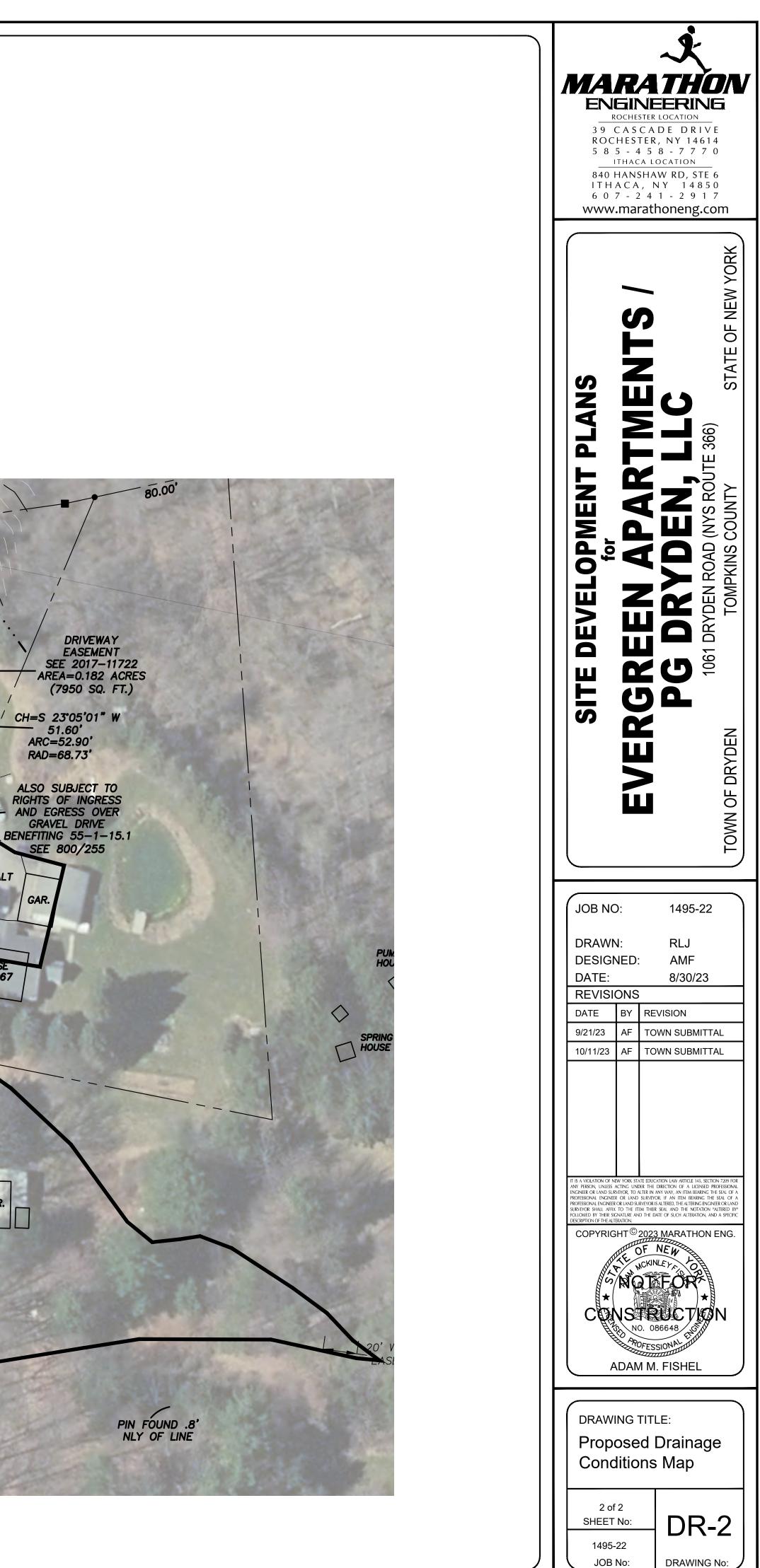
2-Year Event

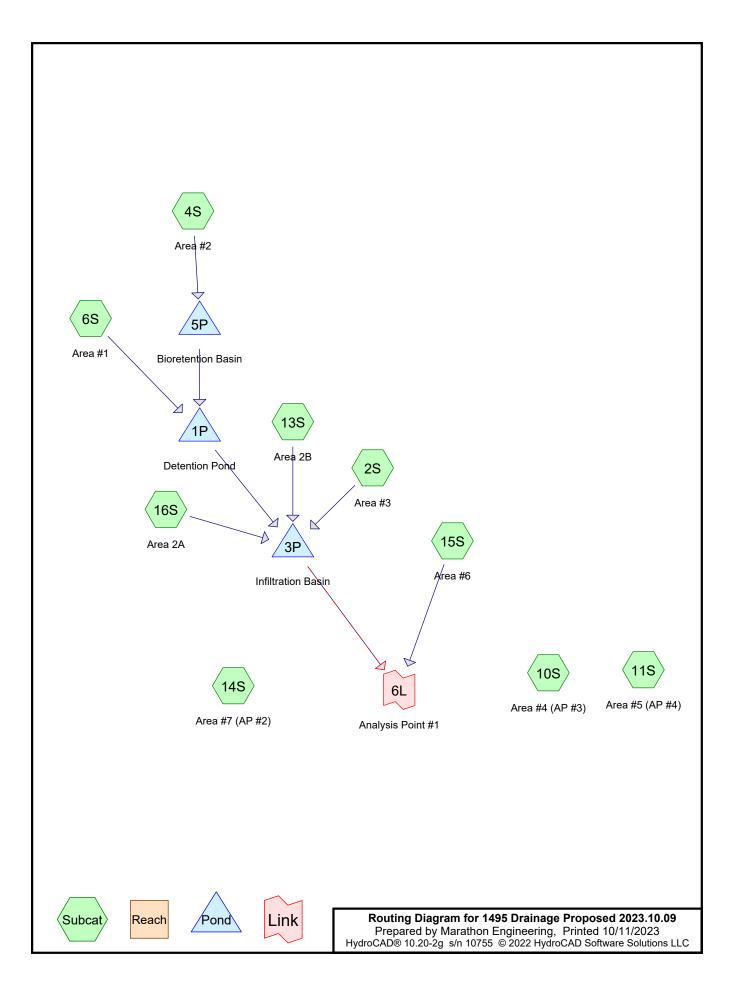
- 11 Node Listing
- 12 Subcat 7S: Existing Area #1 (AP #1)
- 13 Subcat 8S: Existing Area #2 (AP #2)
- 14 Subcat 9S: Existing Area #3 (AP #3)
- 15 Subcat 17S: Existing Area #4 (AP #4)

10-Year Event

- 16 Node Listing
- 17 Subcat 7S: Existing Area #1 (AP #1)
- 18 Subcat 8S: Existing Area #2 (AP #2)
- 19 Subcat 9S: Existing Area #3 (AP #3)
- 20 Subcat 17S: Existing Area #4 (AP #4)

100-Year Event


- 21 Node Listing
- 22 Subcat 7S: Existing Area #1 (AP #1)
- 23 Subcat 8S: Existing Area #2 (AP #2)
- 24 Subcat 9S: Existing Area #3 (AP #3)
- 25 Subcat 17S: Existing Area #4 (AP #4)



le: I:\Engineering\Job Files\1495–22\Drawings\1495 Drainage.dwg, Last saved: 10/11/2023, Plot Date: 10/12/2023, By: AFISHEL, Plot Style: –

AREA #4 ARF' ASPHALT AREA #2B HOUSE NO.1067 AREA #2 <u>AREA #1</u> GAR. SHED GRAVEL DRIVE REED (R.O.) 882/20 ELEC TRANS. PATIO OVHG. OVHG.

– ANALYSIS POINT #3

	Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
_		Nume				(10010)		(1101103)	
	1	1-Year	Type II 24-hr		Default	24.00	1	2.01	2
	2	2-Year	Type II 24-hr		Default	24.00	1	2.34	2
	3	10-Year	Type II 24-hr		Default	24.00	1	3.44	2
	4	100-Year	Type II 24-hr		Default	24.00	1	5.95	2

Rainfall Events Listing

Area Listing (all nodes)

Area	CN	Description
 (acres)		(subcatchment-numbers)
3.092	80	>75% Grass cover, Good, HSG D (2S, 4S, 6S, 10S, 11S, 13S, 14S, 15S, 16S)
1.996	98	Paved parking, HSG D (2S, 4S, 6S, 10S, 13S, 14S, 15S, 16S)
1.240	79	Woods, Fair, HSG D (6S, 11S)
0.324	77	Woods, Good, HSG D (15S)
6.652	85	TOTAL AREA

Soil Listing (all nodes)

Soil	Subcatchment
Group	Numbers
HSG A	
HSG B	
HSG C	
HSG D	2S, 4S, 6S, 10S, 11S, 13S, 14S, 15S, 16S
Other	
	TOTAL AREA
	Group HSG A HSG B HSG C HSG D

Printed 10/11/2023 Page 5

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	0.000	3.092	0.000	3.092	>75% Grass cover, Good	2S, 4S, 6S, 10S, 11S, 13S, 14S, 15S, 16S
0.000	0.000	0.000	1.996	0.000	1.996	Paved parking	2S, 4S, 6S, 10S, 13S, 14S, 15S, 16S
0.000	0.000	0.000	1.240	0.000	1.240	Woods, Fair	6S, 11S
0.000	0.000	0.000	0.324	0.000	0.324	Woods, Good	15S
0.000	0.000	0.000	6.652	0.000	6.652	TOTAL AREA	

Ground Covers (all nodes)

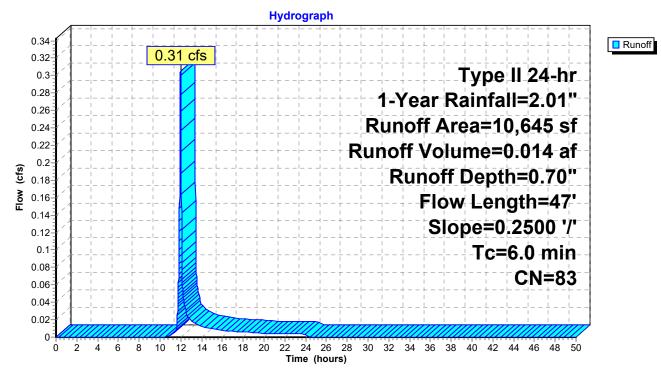
Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Width (inches)	Diam/Height (inches)	Inside-Fill (inches)
 1	4S	0.00	0.00	619.0	0.0300	0.010	0.0	18.0	0.0
2	1P	1,011.00	1,010.00	42.0	0.0238	0.013	0.0	18.0	0.0
3	3P	1,005.70	1,003.00	30.0	0.0900	0.013	0.0	24.0	0.0
4	5P	1,011.50	1,011.00	27.0	0.0185	0.013	0.0	12.0	0.0

Pipe Listing (all nodes)

1495 Drainage Proposed 2023.10.09 <i>Type II 24-I</i>						
Prepared by Marathon Engineering						
HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions	LLC					

Time span=0.00-50.00 hrs, dt=0.01 hrs, 5001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 2S: Area #3 Flow Length=4	Runoff Area=10,645 sf 18.60% Impervious Runoff Depth=0.70" 7' Slope=0.2500 '/' Tc=6.0 min CN=83 Runoff=0.31 cfs 0.014 af
Subcatchment 4S: Area #2	Runoff Area=22,581 sf 67.11% Impervious Runoff Depth=1.25" Flow Length=790' Tc=35.6 min CN=92 Runoff=0.50 cfs 0.054 af
Subcatchment 6S: Area #1 Flow Length=527	Runoff Area=111,872 sf 14.02% Impervious Runoff Depth=0.66" Slope=0.0586 '/' Tc=24.2 min CN=82 Runoff=1.58 cfs 0.140 af
Subcatchment10S: Area #4 (AP #3)	Runoff Area=26,877 sf 39.06% Impervious Runoff Depth=0.91" Flow Length=120' Tc=10.2 min CN=87 Runoff=0.86 cfs 0.047 af
Subcatchment11S: Area #5 (AP #4) Flow Length=420'	Runoff Area=10,307 sf 0.00% Impervious Runoff Depth=0.53" Slope=0.0730 '/' Tc=16.2 min CN=79 Runoff=0.14 cfs 0.010 af
Subcatchment 13S: Area 2B	Runoff Area=43,203 sf 77.73% Impervious Runoff Depth=1.41" Flow Length=41' Tc=6.0 min CN=94 Runoff=2.39 cfs 0.116 af
Subcatchment14S: Area #7 (AP #2)	Runoff Area=20,616 sf 42.44% Impervious Runoff Depth=0.97" Flow Length=98' Tc=6.3 min CN=88 Runoff=0.81 cfs 0.038 af
Subcatchment15S: Area #6	Runoff Area=39,467 sf 3.16% Impervious Runoff Depth=0.53" Flow Length=261' Tc=10.0 min CN=79 Runoff=0.70 cfs 0.040 af
Subcatchment 16S: Area 2A	Runoff Area=4,186 sf 1.53% Impervious Runoff Depth=0.57" Flow Length=41' Tc=6.0 min CN=80 Runoff=0.10 cfs 0.005 af
Pond 1P: Detention Pond	Peak Elev=1,013.17' Storage=3,497 cf Inflow=1.58 cfs 0.171 af Outflow=0.15 cfs 0.171 af
Pond 3P: Infiltration Basin Discarded=0.04 cfs 0.099 af Primary=0.17 cfs	Peak Elev=1,012.25' Storage=5,334 cf Inflow=2.83 cfs 0.306 af 0.141 af Secondary=0.00 cfs 0.000 af Outflow=0.21 cfs 0.241 af
Pond 5P: Bioretention Basin	Peak Elev=1,015.54' Storage=1,059 cf Inflow=0.50 cfs 0.054 af Outflow=0.30 cfs 0.031 af
Link 6L: Analysis Point #1	Inflow=0.70 cfs 0.181 af Primary=0.70 cfs 0.181 af
Total Runoff Area = 6.652	ac Runoff Volume = 0.465 af Average Runoff Depth = 0.84" 69.99% Pervious = 4.656 ac 30.01% Impervious = 1.996 ac

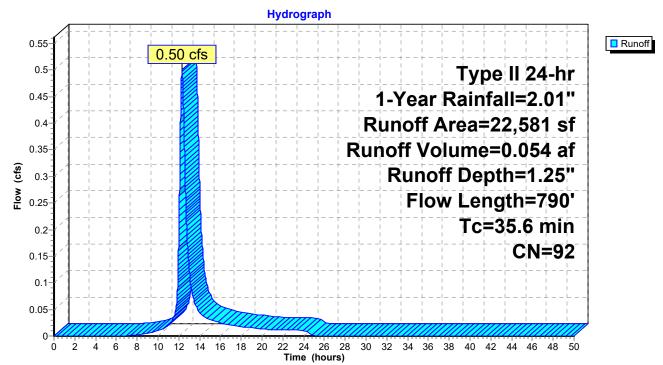

Summary for Subcatchment 2S: Area #3

Runoff = 0.31 cfs @ 11.98 hrs, Volume= Routed to Pond 3P : Infiltration Basin 0.014 af, Depth= 0.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.01"

Ar	rea (sf)	CN [Description						
	1,980	98 F	Paved park	ing, HSG D)				
	8,665	80 >	75% Gras	s cover, Go	ood, HSG D				
	10,645	83 V	Veighted A	verage					
	8,665	8	81.40% Per	vious Area					
	1,980	1	8.60% Imp	pervious Are	ea				
_									
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
3.3	47	0.2500	0.24		Sheet Flow, sheet flow				
					Grass: Dense n= 0.240	P2= 2.34"			
3.3	47	Total, Increased to minimum Tc = 6.0 min							

Subcatchment 2S: Area #3

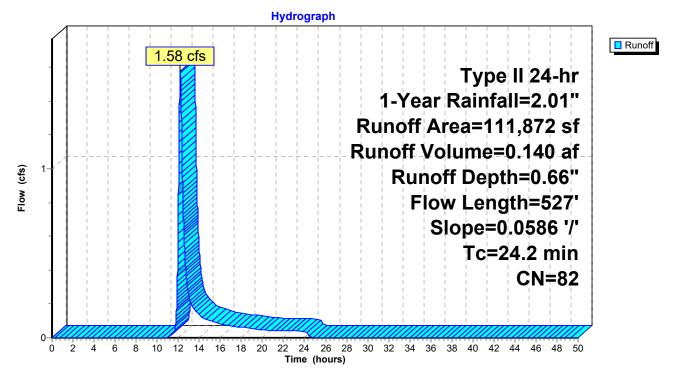

Summary for Subcatchment 4S: Area #2

Runoff = 0.50 cfs @ 12.30 hrs, Volume= Routed to Pond 5P : Bioretention Basin 0.054 af, Depth= 1.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.01"

A	rea (sf)	CN E	Description						
	15,153		B Paved parking, HSG D						
	7,428	80 >	75% Gras	s cover, Go	ood, HSG D				
	22,581	92 V	Veighted A	verage					
	7,428	3	2.89% Per	vious Area					
	15,153	6	7.11% Imp	ervious Ar	ea				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
34.7	150	0.0200	0.07		Sheet Flow, Sheet flow				
					Woods: Light underbrush n= 0.400 P2= 2.34"				
0.1	21	0.0200	2.87		Shallow Concentrated Flow, Shallow concentrate				
					Paved Kv= 20.3 fps				
0.8	619	0.0300	13.38	23.65	Pipe Channel, storm pipe system				
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
					n= 0.010 PVC, smooth interior				
35.6	790	Total							

Subcatchment 4S: Area #2

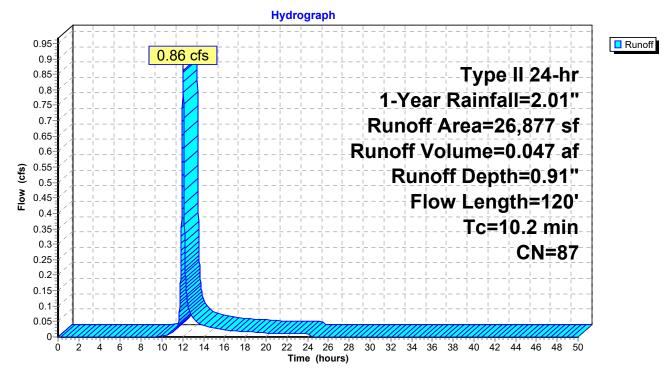

Summary for Subcatchment 6S: Area #1

Runoff = 1.58 cfs @ 12.18 hrs, Volume= Routed to Pond 1P : Detention Pond 0.140 af, Depth= 0.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.01"

	A	rea (sf)	CN	Description		
		15,686	98	Paved park	ing, HSG D	
		47,047		Woods, Fai		
		49,139	80	>75% Gras	s cover, Go	ood, HSG D
		11,872		Weighted A		
		96,186			rvious Area	
		15,686		14.02% Imp	pervious Are	ea
	Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	22.6	150	0.0586	0.11		Sheet Flow, sheet flow
	~ .	100				Woods: Light underbrush n= 0.400 P2= 2.34"
	0.4	100	0.0586	3.90		Shallow Concentrated Flow, Concentrated flow lawn
	0.5	117	0.0586	3.90		Unpaved Kv= 16.1 fps
	0.5	117	0.0560	5.90		Shallow Concentrated Flow, concetrated flow lawn Unpaved Kv= 16.1 fps
	0.1	24	0.0586	4.91		Shallow Concentrated Flow, Shallow Concentrated driveway
	•••					Paved Kv= 20.3 fps
	0.6	136	0.0586	3.90		Shallow Concentrated Flow, Concentrated flow lawn
						Unpaved Kv= 16.1 fps
	24.2	527	Total			

Subcatchment 6S: Area #1

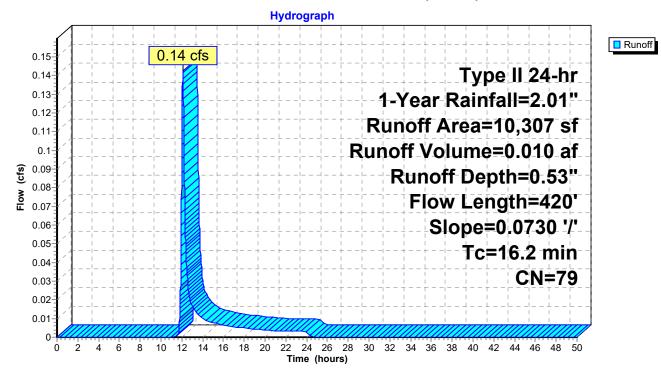

Summary for Subcatchment 10S: Area #4 (AP #3)

Runoff = 0.86 cfs @ 12.02 hrs, Volume= 0.047 af, Depth= 0.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.01"

_	A	rea (sf)	CN E	Description		
		16,379	80 >	75% Gras	s cover, Go	ood, HSG D
_		10,498	98 F	Paved park	ing, HSG D	
		26,877	87 V	Veighted A	verage	
		16,379	6	0.94% Per	vious Area	
		10,498	3	9.06% Imp	pervious Are	ea
	_				_	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.1	100	0.0700	0.16		Sheet Flow, sheet flow
						Grass: Dense n= 0.240 P2= 2.34"
	0.1	20	0.1500	6.24		Shallow Concentrated Flow, shallow concentrated
_						Unpaved Kv= 16.1 fps
	10.2	120	Total			

Subcatchment 10S: Area #4 (AP #3)

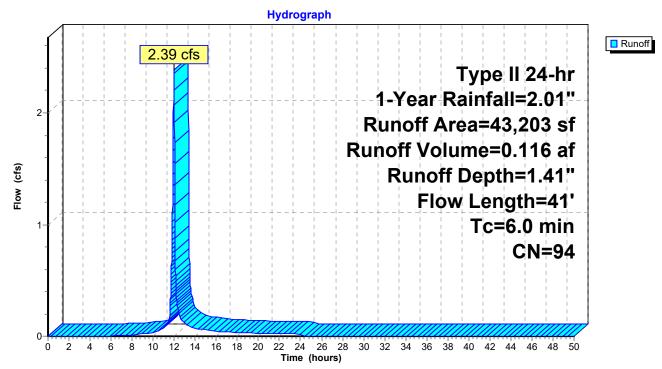

Summary for Subcatchment 11S: Area #5 (AP #4)

Runoff = 0.14 cfs @ 12.10 hrs, Volume= 0.010 af, Depth= 0.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.01"

	A	rea (sf)	CN I	Description		
		3,347			,	ood, HSG D
_		6,960	79	<u>Woods, Fai</u>	r, HSG D	
		10,307		Weighted A		
		10,307		100.00% Pe	ervious Are	а
_	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
	15.0	100	0.0730	0.11		Sheet Flow, sheet flow
_	1.2	320	0.0730	4.35		Woods: Light underbrush n= 0.400 P2= 2.34" Shallow Concentrated Flow, Shallow Concentrated Flow Unpaved Kv= 16.1 fps
	16.2	420	Total			

Subcatchment 11S: Area #5 (AP #4)

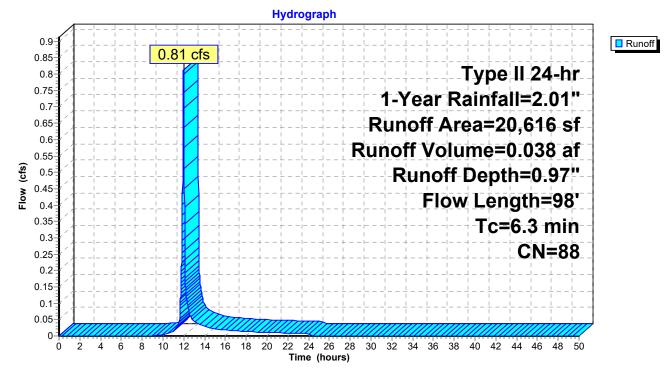

Summary for Subcatchment 13S: Area 2B

Runoff = 2.39 cfs @ 11.97 hrs, Volume= Routed to Pond 3P : Infiltration Basin 0.116 af, Depth= 1.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.01"

_	A	rea (sf)	CN E	Description						
		33,580	98 F	Paved parking, HSG D						
_		9,623	80 >	75% Gras	s cover, Go	ood, HSG D				
		43,203	94 V	Veighted A	verage					
		9,623	2	2.27% Per	vious Area					
		33,580	7	7.73% Imp	ervious Ar	ea				
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.5	10	0.5000	0.33		Sheet Flow, sheet flow				
						Grass: Short n= 0.150 P2= 2.34"				
	1.6	15	0.0667	0.16		Sheet Flow, sheet flow lawn				
						Grass: Short n= 0.150 P2= 2.34"				
	1.4	16	0.2400	0.19		Sheet Flow, detention pond slope				
_						Grass: Dense n= 0.240 P2= 2.34"				
	3.5	41	Total, I	ncreased t	o minimum	Tc = 6.0 min				

Subcatchment 13S: Area 2B


Summary for Subcatchment 14S: Area #7 (AP #2)

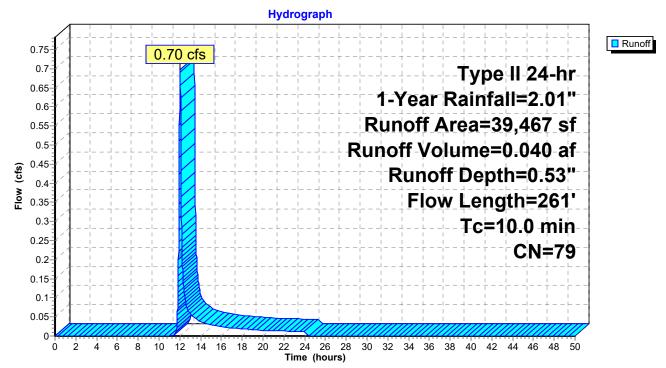
Runoff = 0.81 cfs @ 11.98 hrs, Volume= 0.038 af, Depth= 0.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.01"

A	rea (sf)	CN E	Description		
	8,749	98 F	aved park	ing, HSG D	
	11,867	80 >	75% Gras	s cover, Go	bod, HSG D
	20,616	88 V	Veighted A	verage	
	11,867	5	7.56% Per	vious Area	
	8,749	4	2.44% Imp	pervious Are	ea
_		. .			
TC	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.4	34	0.0588	1.46		Sheet Flow, impervious
					Smooth surfaces n= 0.011 P2= 2.34"
5.9	64	0.1090	0.18		Sheet Flow, sheet flow grass
					Grass: Dense n= 0.240 P2= 2.34"
6.3	98	Total			

Subcatchment 14S: Area #7 (AP #2)

Summary for Subcatchment 15S: Area #6

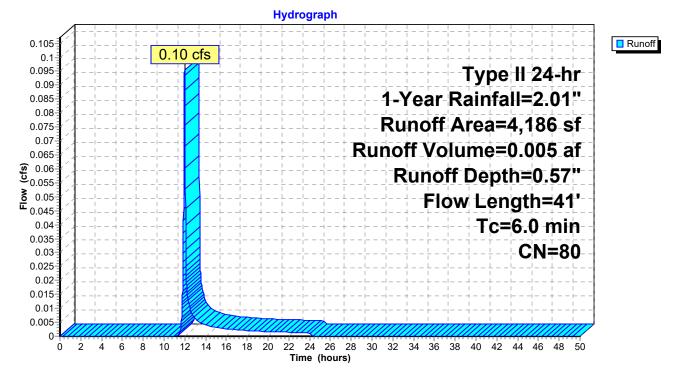

Runoff = 0.70 cfs @ 12.03 hrs, Volume= Routed to Link 6L : Analysis Point #1 0.040 af, Depth= 0.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.01"

_	A	rea (sf)	CN E	Description		
		1,249	98 F	Paved park	ing, HSG D)
		24,099	80 >	•75% Ġras	s cover, Go	bod, HSG D
		14,119	77 V	Voods, Go	od, HSG D	
		39,467	79 V	Veighted A	verage	
		38,218	ç	6.84% Pei	vious Area	
		1,249	3	8.16% Impe	ervious Are	a
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.0	100	0.0925	0.18		Sheet Flow, sheet flow
						Grass: Dense n= 0.240 P2= 2.34"
	0.7	64	0.0100	1.61		Shallow Concentrated Flow, concentrated
						Unpaved Kv= 16.1 fps
	0.3	97	0.1600	6.44		Shallow Concentrated Flow, concentrated
_						Unpaved Kv= 16.1 fps
	10.0	004	— · ·			

10.0 261 Total

Subcatchment 15S: Area #6


Summary for Subcatchment 16S: Area 2A

Runoff = 0.10 cfs @ 11.98 hrs, Volume= Routed to Pond 3P : Infiltration Basin 0.005 af, Depth= 0.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.01"

Α	rea (sf)	CN D	CN Description						
	64	98 P	B Paved parking, HSG D						
	4,122	80 >	75% Gras	s cover, Go	bod, HSG D				
	4,186	80 V	Veighted A	verage					
	4,122	9	8.47% Per	vious Area					
	64	1	.53% Impe	rvious Area	a				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
0.5	10	0.5000	0.33		Sheet Flow, sheet flow				
					Grass: Short n= 0.150 P2= 2.34"				
1.6	15	0.0667	0.16		Sheet Flow, sheet flow lawn				
					Grass: Short n= 0.150 P2= 2.34"				
1.4	16	0.2400	0.19		Sheet Flow, detention pond slope				
					Grass: Dense n= 0.240 P2= 2.34"				
3.5	41	Total, I	ncreased t	o minimum	Tc = 6.0 min				

Subcatchment 16S: Area 2A

Summary for Pond 1P: Detention Pond

[79] Warning: Submerged Pond 5P Primary device # 1 INLET by 1.67'

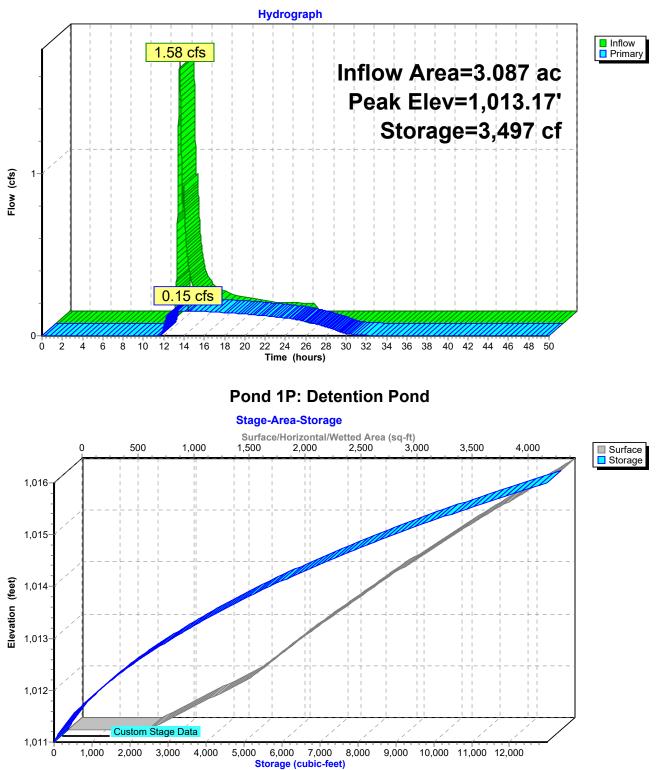
Inflow Area	a =	3.087 ac, 22.94% Impervious, Inflow Depth = 0.66" for 1-Year event				
Inflow	=	1.58 cfs @ 12.18 hrs, Volume= 0.171 af				
Outflow	=	0.15 cfs @ 14.40 hrs, Volume= 0.171 af, Atten= 90%, Lag= 133.2 min				
Primary	=	0.15 cfs @ 14.40 hrs, Volume= 0.171 af				
Routed to Pond 3P : Infiltration Basin						

Routing by Stor-Ind method, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Peak Elev= 1,013.17' @ 14.40 hrs Surf.Area= 2,351 sf Storage= 3,497 cf

Plug-Flow detention time= 289.0 min calculated for 0.171 af (100% of inflow) Center-of-Mass det. time= 289.1 min (1,175.7 - 886.5)

Volume	Inve	rt Avail.Sto	rage S	torage D	escription		
#1	1,011.0	0' 12,98	38 cf C	Sustom S	tage Data (Pi	r ismatic) Listed bel	low (Recalc)
Elevation (feet	:)	Surf.Area (sq-ft)	Inc.St (cubic-fe	eet)	Cum.Store (cubic-feet)		
1,011.00 1,012.00 1,013.00 1,014.00 1,015.00	0 0 0 0	721 1,632 2,239 2,909 3,637	1, 2, 3,	0 177 936 574 273	0 1,177 3,112 5,686 8,959		
1,016.00 Device	Routing	4,421 Invert		029 Devices	12,988		
#1	Primary	1,011.00'	L= 42.0 Inlet / 0	Outlet Inv	mitered to co	,).700 .0238 '/' Cc= 0.900
#2 #3	Device 1 Device 1	1,011.00' 1,014.20'	30.0" x	« 30.0" H	Flow C= 0.6 oriz. High Flo low at low hea	w C= 0.600	r flow at low heads

Primary OutFlow Max=0.15 cfs @ 14.40 hrs HW=1,013.17' (Free Discharge)


-**1=Culvert** (Passes 0.15 cfs of 8.94 cfs potential flow)

-2=Low Flow (Orifice Controls 0.15 cfs @ 6.95 fps)

-3=High Flow (Controls 0.00 cfs)

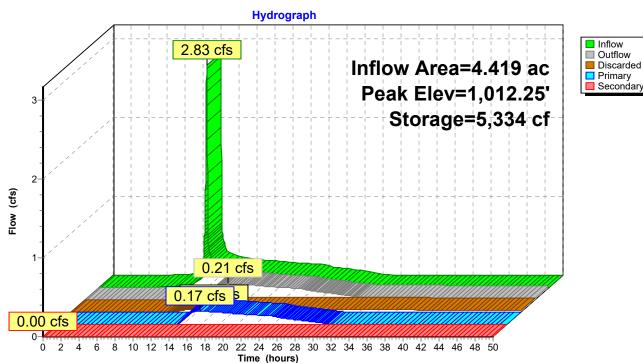
Prepared by Marathon Engineering HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions LLC

Summary for Pond 3P: Infiltration Basin

[81] Warning: Exceeded Pond 1P by 0.96' @ 30.52 hrs

Inflow Area =	4.419 ac, 3	34.53% Imp	ervious, Inflow	Depth = 0.83"	for 1-Year event	
Inflow =	2.83 cfs @	11.97 hrs,	Volume=	0.306 af		
Outflow =	0.21 cfs @	15.86 hrs,	Volume=	0.241 af, Att	en= 93%, Lag= 233.1 min	
Discarded =	0.04 cfs @	15.86 hrs,	Volume=	0.099 af		
Primary =	0.17 cfs @	15.86 hrs,	Volume=	0.141 af		
Routed to Link 6L : Analysis Point #1						
Secondary =	0.00 cfs @	0.00 hrs,	Volume=	0.000 af		
Routed to Link 6L : Analysis Point #1						

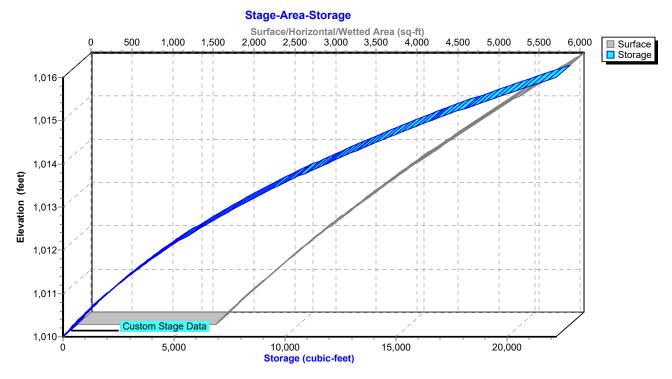
Routing by Stor-Ind method, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Peak Elev= 1,012.25' @ 15.86 hrs Surf.Area= 3,091 sf Storage= 5,334 cf


Plug-Flow detention time= 543.8 min calculated for 0.241 af (79% of inflow) Center-of-Mass det. time= 415.0 min (1,428.5 - 1,013.5)

Volume	Invert	Avail.Sto	rage Storage	Description			
#1	1,010.00'	22,22	25 cf Custom	i Stage Data (Coni	c) Listed below (Recal	c)	
Elevatio		rf.Area	Inc.Store	Cum.Store	Wet.Area		
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)		
1,010.0	0	1,701	0	0	1,701		
1,011.0		2,285	1,986	1,986	2,306		
1,012.0	0	2,924	2,598	4,584	2,970		
1,013.0		3,621	3,266	7,850	3,696		
1,014.0		4,374	3,992	11,842	4,481		
1,015.0		5,183	4,773	16,614	5,327		
1,016.0	0	6,049	5,610	22,225	6,232		
Device	Routing	Invert	Outlet Device	S			
#1	Primary	1,005.70'	24.0" Round	l Culvert			
			L= 30.0' CM	P, square edge hea	adwall, Ke= 0.500		
					,003.00' S= 0.0900 '/	" Cc= 0.900	
			n= 0.013, Flow Area= 3.14 sf				
#2	Device 1	1,012.00'		ermediate Flow C			
			Limited to weir flow at low heads				
#3	Device 1	1,013.70'		Horiz. High Flow			
				ir flow at low heads			
#4	Secondary	1,014.30'		Spillway, Cv= 2.62	(C= 3.28)		
			Head (feet) 0				
			Width (feet)				
#5	Discarded	1,010.00'			rface area from 1,010).00' - 1,016.00'	
		Conductivity to Groundwater Elevation = 1,005.00'					
			Excluded Sur	face area = 1,701 s	ST		

Discarded OutFlow Max=0.04 cfs @ 15.86 hrs HW=1,012.25' (Free Discharge) **5=Exfiltration** (Controls 0.04 cfs)

Primary OutFlow Max=0.17 cfs @ 15.86 hrs HW=1,012.25' (Free Discharge) 1=Culvert (Passes 0.17 cfs of 35.63 cfs potential flow) 2=Intermediate Flow (Orifice Controls 0.17 cfs @ 1.70 fps) 3=High Flow (Controls 0.00 cfs)

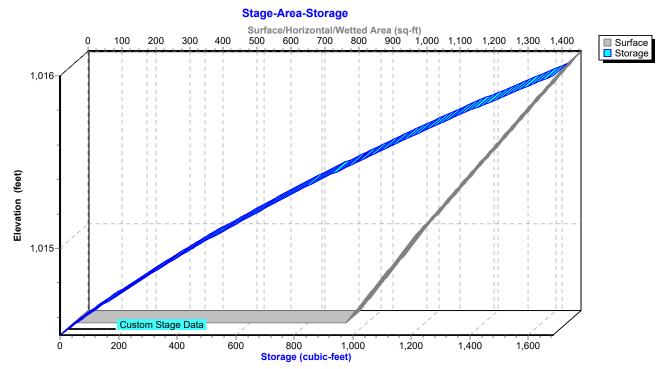

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=1,010.00' (Free Discharge) 4=Emergency Spillway (Controls 0.00 cfs)

Pond 3P: Infiltration Basin

Prepared by Marathon Engineering HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions LLC

Pond 3P: Infiltration Basin

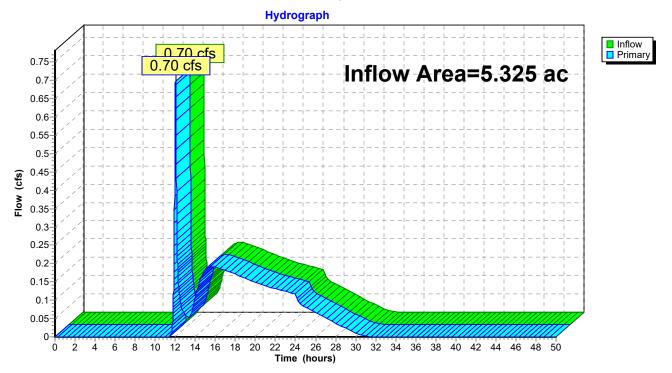
Summary for Pond 5P: Bioretention Basin


Inflow Ar Inflow Outflow Primary Route	= 0 = 0 = 0	0.50 cfs @ 12 0.30 cfs @ 12	2.30 hrs, Volum 2.60 hrs, Volum 2.60 hrs, Volum	e= 0. e= 0.	h = 1.25" for 1-Year event .054 af .031 af, Atten= 39%, Lag= 17.8 min .031 af		
			Span= 0.00-50. Surf.Area= 1,2				
Center-o	Plug-Flow detention time= 211.1 min calculated for 0.031 af (57% of inflow) Center-of-Mass det. time= 98.2 min(938.3 - 840.1)						
Volume	Invert		rage Storage [
#1	1,014.50'	1,68	34 cf Custom	Stage Data (I	Prismatic)Listed below (Recalc)		
_							
Elevatio		urf.Area	Inc.Store	Cum.Store			
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)			
1,014.5	0	804	0	C	0		
1,015.0	0	1,007	453	453	3		
1,016.0	0	1,456	1,232	1,684	4		
Device	Routing	Invert	Outlet Devices				
#1	Primary	1,011.50'	12.0" Round	Culvert			
	, ,	L= 27.0' CMP, square edge headwall, Ke= 0.500					
					50' / 1,011.00' S= 0.0185 '/' Cc= 0.900		
			n= 0.013, Flov				
#2	Device 1	1,015.50'			X 2.00 C= 0.600		
Limited to weir flow at low heads							
				non acton in			
Primary OutFlow Max=0.30 cfs @ 12.60 hrs HW=1,015.54' (Free Discharge)							
Line Culvert (Passes 0.30 cfs of 7.11 cfs notential flow)							

1=Culvert (Passes 0.30 cfs of 7.11 cfs potential flow)
2=Orifice/Grate (Weir Controls 0.30 cfs @ 0.64 fps)

Hydrograph Inflow 0.50 cfs 0.55 Primary Inflow Area=0.518 ac 0.5 Peak Elev=1,015.54' 0.45 Storage=1,059 cf 0.4 0.35 0.30 cfs Flow (cfs) 0.3 0.25 0.2 0.15 0.1 0.05 0ż 6 8 10 12 14 16 18 20 22 24 26 28 Ó 4 30 32 34 36 38 40 42 44 46 48 50 Time (hours)

Pond 5P: Bioretention Basin



Summary for Link 6L: Analysis Point #1

Inflow Area	=	5.325 ac, 29.19% Impervious, Inflow Depth = 0.41" for 1-Year event	
Inflow	=	0.70 cfs @ 12.03 hrs, Volume= 0.181 af	
Primary	=	0.70 cfs @ 12.03 hrs, Volume= 0.181 af, Atten= 0%, Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs

Link 6L: Analysis Point #1

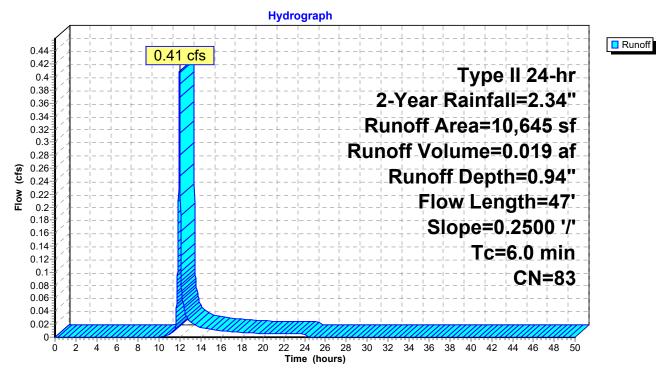
1495 Drainage Proposed 2023.10.09	Type II 24-hr	2-Year Rai	nfall=2.34"
Prepared by Marathon Engineering		Printed	10/11/2023
HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions	LLC		Page 26

Printed 10/11/2023 Page 26

Time span=0.00-50.00 hrs, dt=0.01 hrs, 5001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 2S: Area #3 Flow Length=47	Runoff Area=10,645 sf 18.60% Impervious Runoff Depth=0.94" 7' Slope=0.2500 '/' Tc=6.0 min CN=83 Runoff=0.41 cfs 0.019 af
Subcatchment 4S: Area #2	Runoff Area=22,581 sf 67.11% Impervious Runoff Depth=1.55" Flow Length=790' Tc=35.6 min CN=92 Runoff=0.62 cfs 0.067 af
Subcatchment 6S: Area #1 Flow Length=527'	Runoff Area=111,872 sf 14.02% Impervious Runoff Depth=0.88" Slope=0.0586 '/' Tc=24.2 min CN=82 Runoff=2.18 cfs 0.189 af
Subcatchment10S: Area #4 (AP #3)	Runoff Area=26,877 sf 39.06% Impervious Runoff Depth=1.18" Flow Length=120' Tc=10.2 min CN=87 Runoff=1.11 cfs 0.061 af
Subcatchment11S: Area #5 (AP #4) Flow Length=420'	Runoff Area=10,307 sf 0.00% Impervious Runoff Depth=0.73" Slope=0.0730 '/' Tc=16.2 min CN=79 Runoff=0.21 cfs 0.014 af
Subcatchment 13S: Area 2B	Runoff Area=43,203 sf 77.73% Impervious Runoff Depth=1.72" Flow Length=41' Tc=6.0 min CN=94 Runoff=2.88 cfs 0.142 af
Subcatchment14S: Area #7 (AP #2)	Runoff Area=20,616 sf 42.44% Impervious Runoff Depth=1.25" Flow Length=98' Tc=6.3 min CN=88 Runoff=1.04 cfs 0.049 af
Subcatchment 15S: Area #6	Runoff Area=39,467 sf 3.16% Impervious Runoff Depth=0.73" Flow Length=261' Tc=10.0 min CN=79 Runoff=1.00 cfs 0.055 af
Subcatchment 16S: Area 2A	Runoff Area=4,186 sf 1.53% Impervious Runoff Depth=0.78" Flow Length=41' Tc=6.0 min CN=80 Runoff=0.13 cfs 0.006 af
Pond 1P: Detention Pond	Peak Elev=1,013.85' Storage=5,269 cf Inflow=2.18 cfs 0.232 af Outflow=0.17 cfs 0.232 af
Pond 3P: Infiltration Basin Discarded=0.04 cfs 0.105 af Primary=0.23 cfs	Peak Elev=1,012.30' Storage=5,497 cf Inflow=3.49 cfs 0.400 af 0.223 af Secondary=0.00 cfs 0.000 af Outflow=0.27 cfs 0.329 af
Pond 5P: Bioretention Basin	Peak Elev=1,015.55' Storage=1,081 cf Inflow=0.62 cfs 0.067 af Outflow=0.53 cfs 0.044 af
Link 6L: Analysis Point #1	Inflow=1.00 cfs 0.279 af Primary=1.00 cfs 0.279 af
	ac Runoff Volume = 0.602 af Average Runoff Depth = 1.09" 69.99% Pervious = 4.656 ac 30.01% Impervious = 1.996 ac

Summary for Subcatchment 2S: Area #3

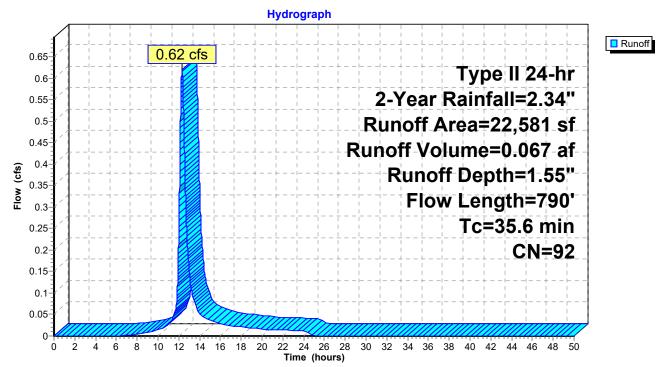

Runoff = 0.41 cfs @ 11.98 hrs, Volume= Routed to Pond 3P : Infiltration Basin

0.019 af, Depth= 0.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=2.34"

Ar	rea (sf)	CN [CN Description						
	1,980	98 F	Paved park	ing, HSG D)				
	8,665	80 >	75% Gras	s cover, Go	ood, HSG D				
	10,645	83 V	Veighted A	verage					
	8,665	8	81.40% Per	vious Area					
	1,980	1	8.60% Imp	pervious Are	ea				
_									
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
3.3	47	0.2500	0.24		Sheet Flow, sheet flow				
					Grass: Dense n= 0.240	P2= 2.34"			
3.3	47	Total, I	ncreased t	o minimum	Tc = 6.0 min				

Subcatchment 2S: Area #3


Summary for Subcatchment 4S: Area #2

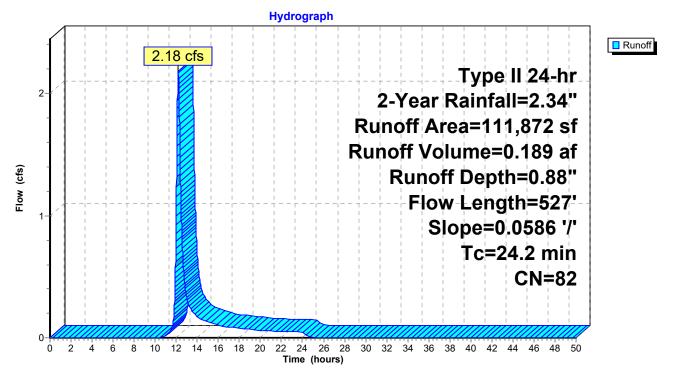
Runoff = 0.62 cfs @ 12.30 hrs, Volume= 0.067 af, Depth= 1.55" Routed to Pond 5P : Bioretention Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=2.34"

A	rea (sf)	CN E	Description		
	15,153			ing, HSG D	
	7,428	80 >	75% Gras	s cover, Go	ood, HSG D
	22,581	92 V	Veighted A	verage	
	7,428	3	2.89% Per	vious Area	
	15,153	6	7.11% Imp	pervious Are	ea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
34.7	150	0.0200	0.07		Sheet Flow, Sheet flow
					Woods: Light underbrush n= 0.400 P2= 2.34"
0.1	21	0.0200	2.87		Shallow Concentrated Flow, Shallow concentrate
					Paved Kv= 20.3 fps
0.8	619	0.0300	13.38	23.65	Pipe Channel, storm pipe system
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
					n= 0.010 PVC, smooth interior
35.6	790	Total			

Subcatchment 4S: Area #2

Summary for Subcatchment 6S: Area #1

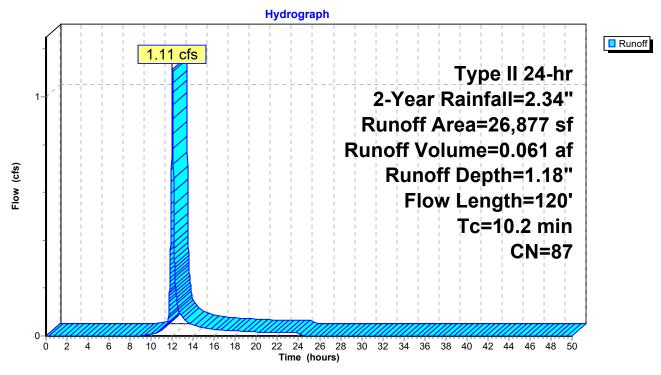

Runoff = 2.18 cfs @ 12.18 hrs, Volume= Routed to Pond 1P : Detention Pond

0.189 af, Depth= 0.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=2.34"

	A	rea (sf)	CN	Description		
	15,686 98 Pa			Paved park	ing, HSG D	
		47,047		Woods, Fai		
		49,139	80	>75% Gras	s cover, Go	ood, HSG D
		11,872		Weighted A		
		96,186			rvious Area	
		15,686		14.02% Imp	pervious Are	ea
	Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	22.6	150	0.0586	0.11		Sheet Flow, sheet flow
	~ .	100				Woods: Light underbrush n= 0.400 P2= 2.34"
	0.4	100	0.0586	3.90		Shallow Concentrated Flow, Concentrated flow lawn
	0.5	117	0.0586	3.90		Unpaved Kv= 16.1 fps
	0.5	117	0.0560	5.90		Shallow Concentrated Flow, concetrated flow lawn Unpaved Kv= 16.1 fps
	0.1	24	0.0586	4.91		Shallow Concentrated Flow, Shallow Concentrated driveway
	•••					Paved Kv= 20.3 fps
	0.6	136	0.0586	3.90		Shallow Concentrated Flow, Concentrated flow lawn
						Unpaved Kv= 16.1 fps
	24.2	527	Total			

Subcatchment 6S: Area #1

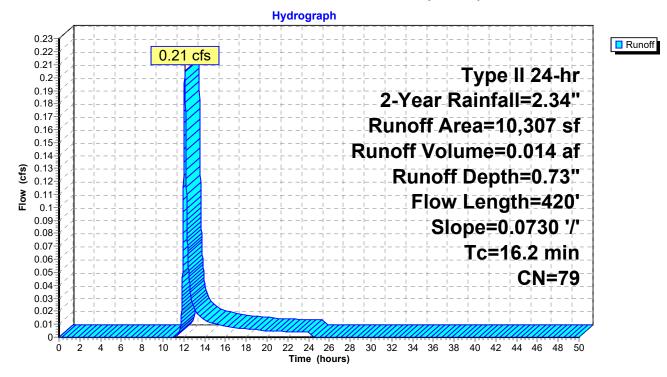

Summary for Subcatchment 10S: Area #4 (AP #3)

Runoff = 1.11 cfs @ 12.02 hrs, Volume= 0.061 af, Depth= 1.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=2.34"

_	A	rea (sf)	CN E	Description		
		16,379	80 >	75% Gras	s cover, Go	ood, HSG D
_		10,498	98 F	aved park	ing, HSG D	
		26,877	87 V	Veighted A	verage	
		16,379	6	0.94% Per	vious Area	
		10,498	3	9.06% Imp	pervious Are	ea
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.1	100	0.0700	0.16		Sheet Flow, sheet flow
						Grass: Dense n= 0.240 P2= 2.34"
	0.1	20	0.1500	6.24		Shallow Concentrated Flow, shallow concentrated
_						Unpaved Kv= 16.1 fps
	10.2	120	Total			

Subcatchment 10S: Area #4 (AP #3)


Summary for Subcatchment 11S: Area #5 (AP #4)

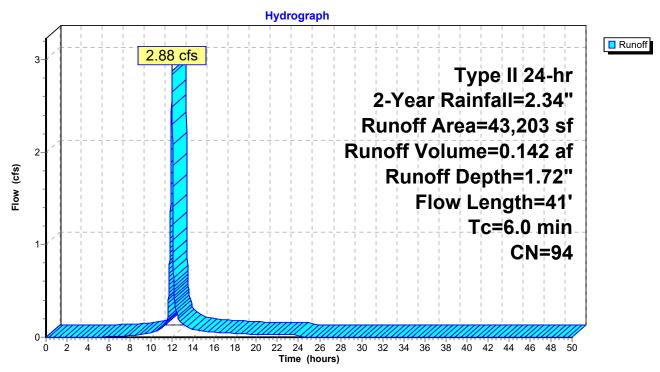
Runoff = 0.21 cfs @ 12.10 hrs, Volume= 0.014 af, Depth= 0.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=2.34"

_	A	rea (sf)	CN I	CN Description					
		3,347	80 >	>75% Gras	s cover, Go	ood, HSG D			
_		6,960	79 \	Noods, Fai	r, HSG D				
		10,307 10,307		Veighted A	verage ervious Are	2			
		10,307			ervious Are	a			
	Tc	Length	Slope	,	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	15.0	100	0.0730	0.11		Sheet Flow, sheet flow			
						Woods: Light underbrush n= 0.400 P2= 2.34"			
	1.2	320	0.0730	4.35		Shallow Concentrated Flow, Shallow Concentrated Flow Unpaved Kv= 16.1 fps			
	16.2	420	Total						

Subcatchment 11S: Area #5 (AP #4)

Summary for Subcatchment 13S: Area 2B


Runoff 2.88 cfs @ 11.97 hrs, Volume= = Routed to Pond 3P : Infiltration Basin

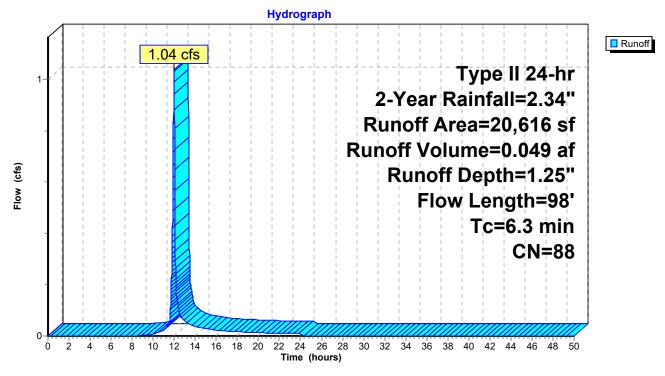
0.142 af, Depth= 1.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=2.34"

_	A	rea (sf)	CN E	Description		
		33,580	98 F	aved park	ing, HSG D	
_		9,623	80 >	75% Ġras	s cover, Go	ood, HSG D
		43,203	94 V	Veighted A	verage	
		9,623	2	2.27% Per	vious Area	
		33,580	7	7.73% Imp	ervious Ar	ea
	_					
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.5	10	0.5000	0.33		Sheet Flow, sheet flow
						Grass: Short n= 0.150 P2= 2.34"
	1.6	15	0.0667	0.16		Sheet Flow, sheet flow lawn
						Grass: Short n= 0.150 P2= 2.34"
	1.4	16	0.2400	0.19		Sheet Flow, detention pond slope
						Grass: Dense n= 0.240 P2= 2.34"
	3.5	41	Total, I	ncreased t	o minimum	Tc = 6.0 min

Subcatchment 13S: Area 2B

Total, Increased to minimum Tc = 6.0 min


Summary for Subcatchment 14S: Area #7 (AP #2)

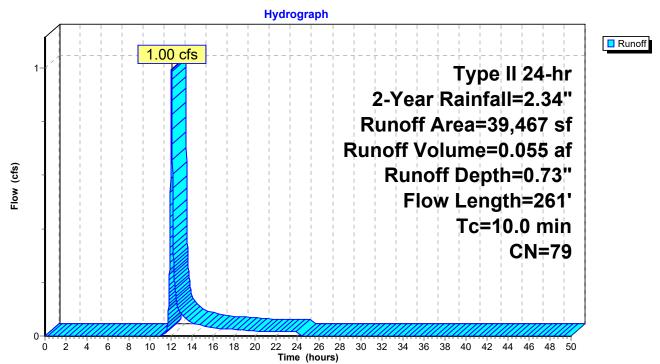
Runoff = 1.04 cfs @ 11.98 hrs, Volume= 0.049 af, Depth= 1.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=2.34"

Area	ı (sf)	CN E	Description		
8	,749	98 F	aved park	ing, HSG D	
11	,867	80 >	75% Gras	s cover, Go	ood, HSG D
20	,616	88 V	Veighted A	verage	
11	,867	5	7.56% Per	vious Area	
8	,749	4	2.44% Imp	pervious Ar	ea
	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.4	34	0.0588	1.46		Sheet Flow, impervious
5.9	64	0.1090	0.18		Smooth surfaces n= 0.011 P2= 2.34" Sheet Flow, sheet flow grass Grass: Dense n= 0.240 P2= 2.34"
6.3	98	Total			

Subcatchment 14S: Area #7 (AP #2)

Summary for Subcatchment 15S: Area #6


Runoff = 1.00 cfs @ 12.03 hrs, Volume= Routed to Link 6L : Analysis Point #1 0.055 af, Depth= 0.73"

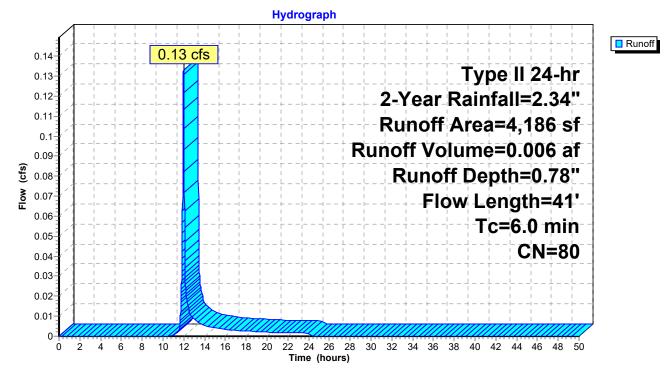
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=2.34"

_	A	rea (sf)	CN [Description		
		1,249	98 F	Paved park	ing, HSG D)
		24,099	80 >	⊳75% Ġras	s cover, Go	bod, HSG D
		14,119	77 V	Voods, Go	od, HSG D	
		39,467	79 V	Veighted A	verage	
		38,218	ç	96.84% Pei	vious Area	
		1,249	3	8.16% Impe	ervious Are	а
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.0	100	0.0925	0.18		Sheet Flow, sheet flow
						Grass: Dense n= 0.240 P2= 2.34"
	0.7	64	0.0100	1.61		Shallow Concentrated Flow, concentrated
						Unpaved Kv= 16.1 fps
	0.3	97	0.1600	6.44		Shallow Concentrated Flow, concentrated
_						Unpaved Kv= 16.1 fps
	40.0	004	- · ·			

10.0 261 Total

Subcatchment 15S: Area #6

Summary for Subcatchment 16S: Area 2A


Runoff = 0.13 cfs @ 11.98 hrs, Volume= 0.0 Routed to Pond 3P : Infiltration Basin

0.006 af, Depth= 0.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=2.34"

	A	rea (sf)	CN E	CN Description						
		64	98 F	98 Paved parking, HSG D						
_		4,122	80 >	75% Ġras	s cover, Go	bod, HSG D				
		4,186	80 V	Veighted A	verage					
		4,122	ç	8.47% Per	vious Area					
		64	1	.53% Impe	ervious Are	a				
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.5	10	0.5000	0.33		Sheet Flow, sheet flow				
						Grass: Short n= 0.150 P2= 2.34"				
	1.6	15	0.0667	0.16		Sheet Flow, sheet flow lawn				
						Grass: Short n= 0.150 P2= 2.34"				
	1.4	16	0.2400	0.19		Sheet Flow, detention pond slope				
						Grass: Dense n= 0.240 P2= 2.34"				
	3.5	41	Total, I	ncreased t	o minimum	Tc = 6.0 min				

Subcatchment 16S: Area 2A

Summary for Pond 1P: Detention Pond

[79] Warning: Submerged Pond 5P Primary device # 1 INLET by 2.35'

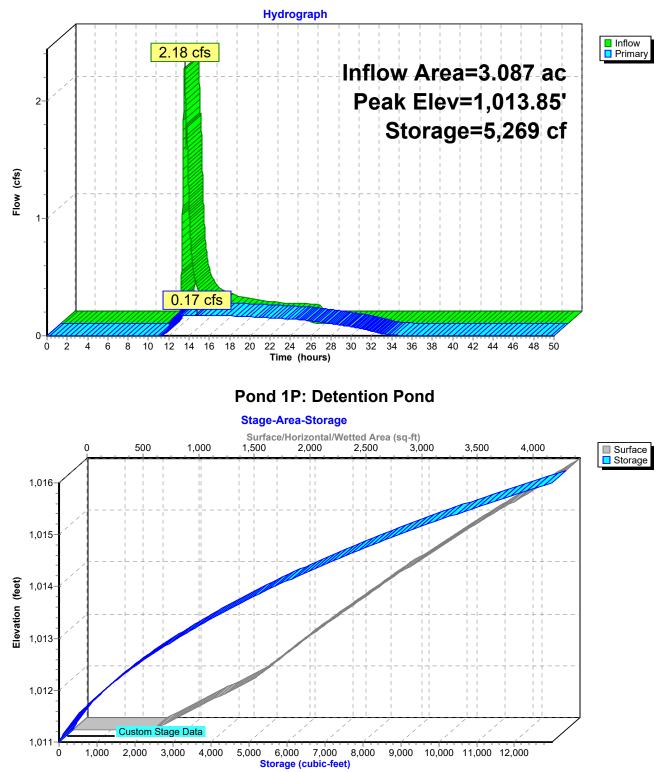
Inflow Area	a =	3.087 ac, 22.94% Impervious, Inflow Depth = 0.90" for 2-Year event						
Inflow	=	2.18 cfs @ 12.18 hrs, Volume= 0.232 af						
Outflow	=	0.17 cfs @ 14.77 hrs, Volume= 0.232 af, Atten= 92%, Lag= 155.1 min						
Primary	=	0.17 cfs @ 14.77 hrs, Volume= 0.232 af						
Routed to Pond 3P : Infiltration Basin								

Routing by Stor-Ind method, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Peak Elev= 1,013.85' @ 14.77 hrs Surf.Area= 2,811 sf Storage= 5,269 cf

Plug-Flow detention time= 374.2 min calculated for 0.232 af (100% of inflow) Center-of-Mass det. time= 374.4 min (1,248.3 - 874.0)

Volume	Inve	ert Avail.Sto	rage Stora	age Description	
#1	1,011.0	0' 12,98	88 cf Cust	tom Stage Data (P	rismatic)Listed below (Recalc)
Elevation (feet) 1,011.00 1,012.00 1,013.00 1,014.00 1,015.00		Surf.Area (sq-ft) 721 1,632 2,239 2,909 3,637	Inc.Store (cubic-feet) (0 1,177 1,936 2,574 3,273) (cubic-feet)) 0 7 1,177 6 3,112 4 5,686 8 8,959	
1,016.0	0	4,421	4,029	12,988	
<u>Device</u> #1				und Culvert	
#2 #3	Device 1 Device 1			' / 1,010.00' S= 0.0238 '/' Cc= 0.900 f 600 Limited to weir flow at low heads ow C= 0.600	

Primary OutFlow Max=0.17 cfs @ 14.77 hrs HW=1,013.85' (Free Discharge)


-**1=Culvert** (Passes 0.17 cfs of 10.89 cfs potential flow)

-2=Low Flow (Orifice Controls 0.17 cfs @ 8.02 fps)

-3=High Flow (Controls 0.00 cfs)

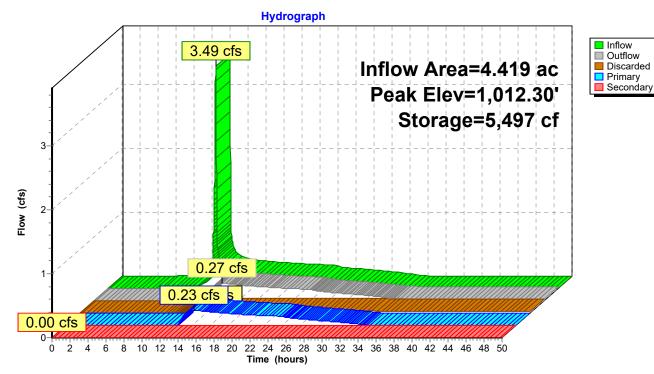
Prepared by Marathon Engineering HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions LLC

Summary for Pond 3P: Infiltration Basin

[81] Warning: Exceeded Pond 1P by 0.96' @ 33.75 hrs

Inflow Area =	4.419 ac, 3	34.53% Imp	ervious, Inflow	Depth = 1.09" for 2-Year	event		
Inflow =	3.49 cfs @	11.97 hrs,	Volume=	0.400 af			
Outflow =	0.27 cfs @	14.26 hrs,	Volume=	0.329 af, Atten= 92%, La	ag= 137.3 min		
Discarded =	0.04 cfs @	14.26 hrs,	Volume=	0.105 af	-		
Primary =	0.23 cfs @	14.26 hrs,	Volume=	0.223 af			
Routed to Link							
Secondary =	0.00 cfs @	0.00 hrs,	Volume=	0.000 af			
Routed to Link 6L : Analysis Point #1							

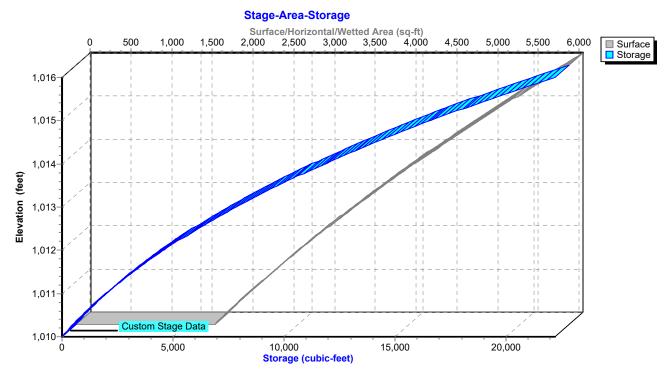
Routing by Stor-Ind method, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Peak Elev= 1,012.30' @ 14.26 hrs Surf.Area= 3,126 sf Storage= 5,497 cf


Plug-Flow detention time= 452.4 min calculated for 0.329 af (82% of inflow) Center-of-Mass det. time= 323.5 min (1,385.4 - 1,061.9)

Volume	Invert	Avail.Sto	rage Storage Description					
#1	1,010.00'	22,22	25 cf Custor	cf Custom Stage Data (Conic)Listed below (Recalc)				
Elevatio	n Su	ırf.Area	Inc.Store	Cum.Store	Wet.Area			
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)			
1,010.0	0	1,701	0	0	1,701			
1,011.0	0	2,285	1,986	1,986	2,306			
1,012.0	0	2,924	2,598	4,584	2,970			
1,013.0	0	3,621	3,266	7,850	3,696			
1,014.0		4,374	3,992	11,842	4,481			
1,015.0		5,183	4,773	16,614	5,327			
1,016.0	0	6,049	5,610	22,225	6,232			
Device	Routing	Invert	Outlet Device	es				
#1	Primary	1,005.70'	24.0" Roun	d Culvert				
			L= 30.0' CN	IP, square edge he	adwall, Ke= 0.500			
					1,003.00' S= 0.0900) '/' Cc= 0.900		
				ow Area= 3.14 sf				
#2	Device 1	1,012.00'	6.0" Vert. Intermediate Flow C= 0.600					
				eir flow at low heads				
#3	Device 1	1,013.70'		" Horiz. High Flow				
				eir flow at low heads				
#4	Secondary	1,014.30'		Spillway, Cv= 2.62	2 (C= 3.28)			
			Head (feet)					
	D : 1 1	4 9 4 9 9 9		15.00 21.00				
#5	Discarded	1,010.00'			urface area from 1,0	10.00' - 1,016.00'		
				to Groundwater Ele				
			Excluded Su	rface area = 1,701	SI			

Discarded OutFlow Max=0.04 cfs @ 14.26 hrs HW=1,012.30' (Free Discharge) **5=Exfiltration** (Controls 0.04 cfs)

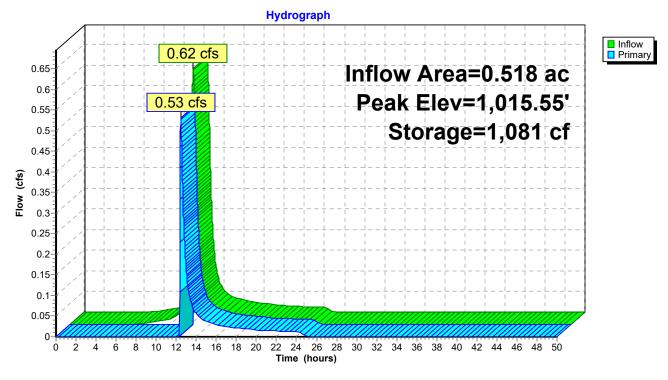
Primary OutFlow Max=0.23 cfs @ 14.26 hrs HW=1,012.30' (Free Discharge) 1=Culvert (Passes 0.23 cfs of 35.80 cfs potential flow) 2=Intermediate Flow (Orifice Controls 0.23 cfs @ 1.87 fps) 3=High Flow (Controls 0.00 cfs)


Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=1,010.00' (Free Discharge) 4=Emergency Spillway (Controls 0.00 cfs)

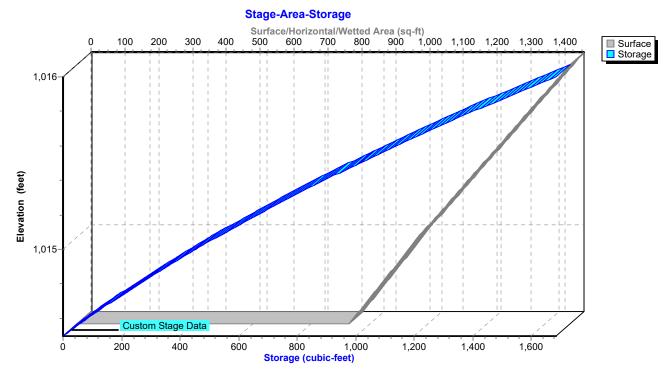
Pond 3P: Infiltration Basin

Prepared by Marathon Engineering HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions LLC

Pond 3P: Infiltration Basin

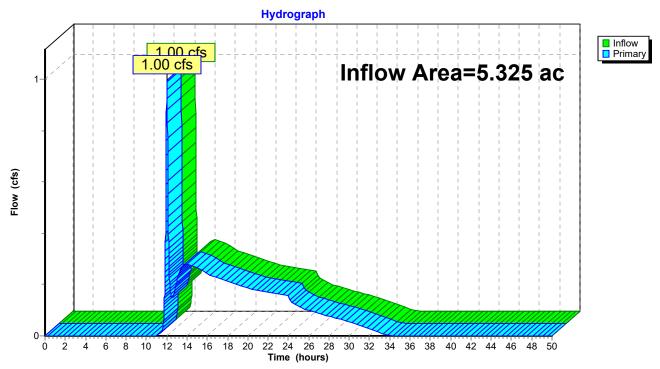


Summary for Pond 5P: Bioretention Basin


Inflow A Inflow Outflow Primary Rout	= = =	0.62 cfs @ 12 0.53 cfs @ 12	2.30 hrs, Volun 2.45 hrs, Volun 2.45 hrs, Volun	ne= 0.044 af, Atten= 14%, Lag= 9.0 min				
Routing by Stor-Ind method, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Peak Elev= 1,015.55' @ 12.45 hrs Surf.Area= 1,256 sf Storage= 1,081 cf								
Plug-Flow detention time= 178.1 min calculated for 0.044 af (65% of inflow) Center-of-Mass det. time= 73.8 min (907.7 - 833.9)								
Volume	Inve	ert Avail.Sto	rage Storage	Description				
#1	1,014.5	0' 1,68	B4 cf Custom	Stage Data (Prismatic)Listed below (Recalc)				
Elevatio	on	Surf.Area	Inc.Store	Cum.Store				
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)				
1,014.		804	0	0				
1,015.0		1,007	453	453				
1,016.0		1,456	1,232	1,684				
.,		.,	- ,	.,				
Device	Routing	Invert	Outlet Devices	3				
#1	Primary	1,011.50'	12.0" Round	Culvert				
	-			P, square edge headwall, Ke= 0.500				
				nvert= 1,011.50' / 1,011.00' S= 0.0185 '/' Cc= 0.90)0			
			,	w Area= 0.79 sf				
#2	Device 1	1,015.50'		Drifice/Grate X 2.00 C= 0.600				
			Limited to wei	r flow at low heads				
Primary OutFlow Max=0.53 cfs @ 12.45 hrs HW=1,015.55' (Free Discharge)								
1=Cı	Ilvert (Pag	sees 0 53 cfs of	7 13 cfs notenti	al flow)				

-1=Culvert (Passes 0.53 cfs of 7.13 cfs potential flow) -2=Orifice/Grate (Weir Controls 0.53 cfs @ 0.77 fps)

Pond 5P: Bioretention Basin


Pond 5P: Bioretention Basin

Summary for Link 6L: Analysis Point #1

Inflow Area =	5.325 ac, 29.19% Impervious, Inflow D	Depth = 0.63" for 2-Year event
Inflow =	1.00 cfs @ 12.03 hrs, Volume=	0.279 af
Primary =	1.00 cfs @12.03 hrs, Volume=	0.279 af, Atten= 0%, Lag= 0.0 min

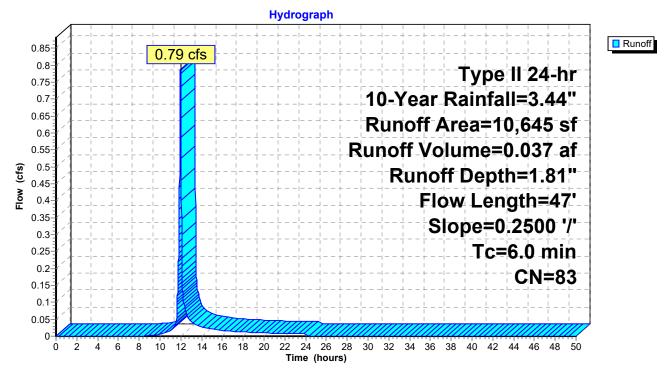
Primary outflow = Inflow, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs

Link 6L: Analysis Point #1

1495 Drainage Proposed 2023.10.09	Type II 24-hr	10-Year Rainfall=3.44"
Prepared by Marathon Engineering		Printed 10/11/2023
HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solution	is LLC	Page 45

Time span=0.00-50.00 hrs, dt=0.01 hrs, 5001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 2S: Area #3 Flow Length=47	Runoff Area=10,645 sf 18.60% Impervious Runoff Depth=1.81" ' Slope=0.2500 '/' Tc=6.0 min CN=83 Runoff=0.79 cfs 0.037 af
Subcatchment4S: Area #2	Runoff Area=22,581 sf 67.11% Impervious Runoff Depth=2.58" Flow Length=790' Tc=35.6 min CN=92 Runoff=1.02 cfs 0.111 af
Subcatchment 6S: Area #1 Flow Length=527'	Runoff Area=111,872 sf 14.02% Impervious Runoff Depth=1.73" Slope=0.0586 '/' Tc=24.2 min CN=82 Runoff=4.42 cfs 0.371 af
Subcatchment10S: Area #4 (AP #3)	Runoff Area=26,877 sf 39.06% Impervious Runoff Depth=2.13" Flow Length=120' Tc=10.2 min CN=87 Runoff=1.99 cfs 0.109 af
Subcatchment11S: Area #5 (AP #4) Flow Length=420'	Runoff Area=10,307 sf 0.00% Impervious Runoff Depth=1.52" Slope=0.0730 '/' Tc=16.2 min CN=79 Runoff=0.45 cfs 0.030 af
Subcatchment 13S: Area 2B	Runoff Area=43,203 sf 77.73% Impervious Runoff Depth=2.78" Flow Length=41' Tc=6.0 min CN=94 Runoff=4.52 cfs 0.230 af
Subcatchment14S: Area #7 (AP #2)	Runoff Area=20,616 sf 42.44% Impervious Runoff Depth=2.21" Flow Length=98' Tc=6.3 min CN=88 Runoff=1.80 cfs 0.087 af
Subcatchment15S: Area #6	Runoff Area=39,467 sf 3.16% Impervious Runoff Depth=1.52" Flow Length=261' Tc=10.0 min CN=79 Runoff=2.12 cfs 0.115 af
Subcatchment 16S: Area 2A	Runoff Area=4,186 sf 1.53% Impervious Runoff Depth=1.59" Flow Length=41' Tc=6.0 min CN=80 Runoff=0.27 cfs 0.013 af
Pond 1P: Detention Pond	Peak Elev=1,014.40' Storage=6,919 cf Inflow=5.23 cfs 0.459 af Outflow=3.20 cfs 0.459 af
Pond 3P: Infiltration Basin Discarded=0.07 cfs 0.119 af Primary=1.11 cfs	Peak Elev=1,013.62' Storage=10,238 cf Inflow=5.68 cfs 0.738 af 0.541 af Secondary=0.00 cfs 0.000 af Outflow=1.18 cfs 0.660 af
Pond 5P: Bioretention Basin	Peak Elev=1,015.58' Storage=1,118 cf Inflow=1.02 cfs 0.111 af Outflow=1.02 cfs 0.088 af
Link 6L: Analysis Point #1	Inflow=2.66 cfs 0.656 af Primary=2.66 cfs 0.656 af
	ac Runoff Volume = 1.103 af Average Runoff Depth = 1.99" 69.99% Pervious = 4.656 ac 30.01% Impervious = 1.996 ac

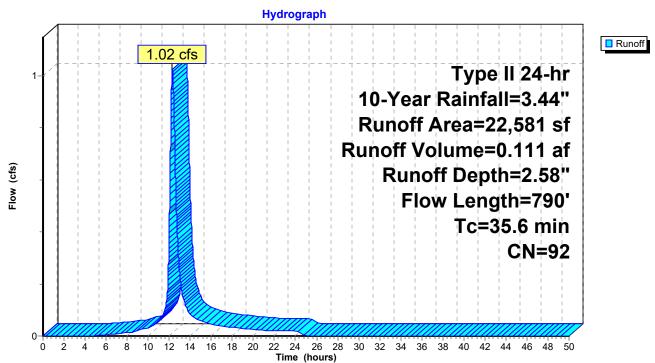

Summary for Subcatchment 2S: Area #3

Runoff = 0.79 cfs @ 11.97 hrs, Volume= 0.037 af, Depth= 1.81" Routed to Pond 3P : Infiltration Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.44"

A	rea (sf)	CN E	Description						
	1,980	98 F	Paved parking, HSG D						
	8,665	80 >	>75% Grass cover, Good, HSG D						
	10,645	83 V	Weighted Average						
	8,665	8	31.40% Per	vious Area					
	1,980	1	8.60% Imp	pervious Are	ea				
_									
Тс	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
3.3	47	0.2500	0.24		Sheet Flow, sheet flow				
					Grass: Dense n= 0.240 P2= 2.34"				
3.3	47	Total, Increased to minimum Tc = 6.0 min							

Subcatchment 2S: Area #3


Summary for Subcatchment 4S: Area #2

Runoff = 1.02 cfs @ 12.30 hrs, Volume= Routed to Pond 5P : Bioretention Basin 0.111 af, Depth= 2.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.44"

A	rea (sf)	CN E	Description					
	15,153		Paved parking, HSG D					
	7,428	80 >	75% Gras	s cover, Go	ood, HSG D			
	22,581	92 V	Veighted A	verage				
	7,428	3	2.89% Per	vious Area				
	15,153	6	7.11% Imp	ervious Ar	ea			
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
34.7	150	0.0200	0.07		Sheet Flow, Sheet flow			
					Woods: Light underbrush n= 0.400 P2= 2.34"			
0.1	21	0.0200	2.87		Shallow Concentrated Flow, Shallow concentrate			
					Paved Kv= 20.3 fps			
0.8	619	0.0300	13.38	23.65	Pipe Channel, storm pipe system			
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'			
					n= 0.010 PVC, smooth interior			
35.6	790	Total						

Subcatchment 4S: Area #2


Summary for Subcatchment 6S: Area #1

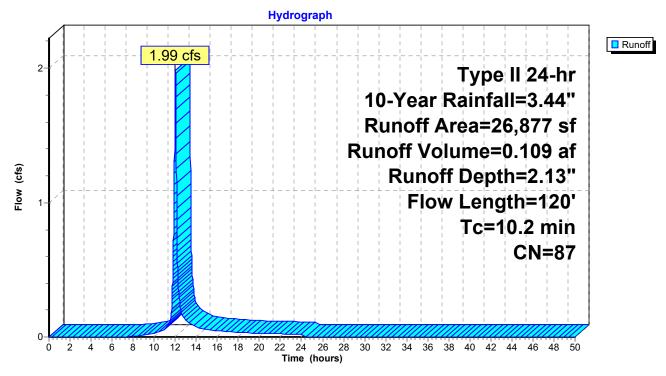
Runoff = 4.42 cfs @ 12.18 hrs, Volume= Routed to Pond 1P : Detention Pond 0.371 af, Depth= 1.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.44"

	Area (sf)	CN I	Description		
15,686 98 Paved parking, HS					
	47,047	79	Noods, Fai	r, HSG D	
	49,139	80 :	>75% Gras	s cover, Go	ood, HSG D
	111,872		Neighted A		
	96,186			rvious Area	
	15,686	·	14.02% Imp	pervious Ar	ea
-	1 41.	01			
To (min)		Slope (ft/ft)		Capacity (cfs)	Description
(min)	. ,	· · · · ·		(015)	
22.6	150	0.0586	0.11		Sheet Flow, sheet flow
0.4	100	0.0500	0.00		Woods: Light underbrush n= 0.400 P2= 2.34"
0.4	100	0.0586	3.90		Shallow Concentrated Flow, Concentrated flow lawn
0.5	4 4 7	0 0500	0.00		Unpaved Kv= 16.1 fps
0.5	117	0.0586	3.90		Shallow Concentrated Flow, concetrated flow lawn
0.4	04	0.0500	4.04		Unpaved Kv= 16.1 fps
0.1	24	0.0586	4.91		Shallow Concentrated Flow, Shallow Concentrated driveway
	100	0 0500	0.00		Paved Kv= 20.3 fps
0.6	136	0.0586	3.90		Shallow Concentrated Flow, Concentrated flow lawn
					Unpaved Kv= 16.1 fps
24.2	527	Total			

Subcatchment 6S: Area #1

Prepared by Marathon Engineering HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions LLC

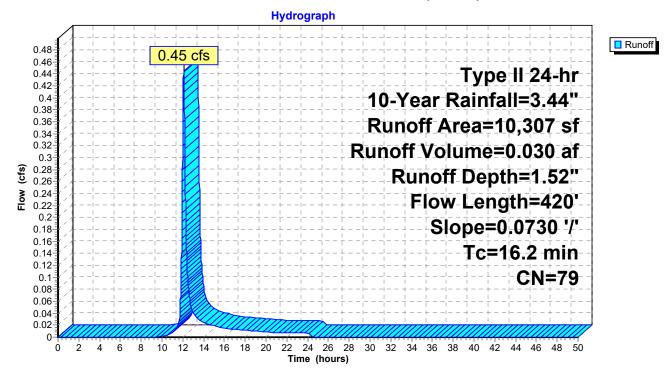

Summary for Subcatchment 10S: Area #4 (AP #3)

Runoff = 1.99 cfs @ 12.02 hrs, Volume= 0.109 af, Depth= 2.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.44"

_	A	rea (sf)	CN E	Description						
		16,379	80 >	75% Grass cover, Good, HSG D						
_		10,498	98 F	Paved parking, HSG D						
26,877 87 Weighted Average										
		16,379	6	0.94% Per	vious Area					
10,498 39.06% Impervious Area					pervious Ar	ea				
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.1	100	0.0700	0.16		Sheet Flow, sheet flow				
						Grass: Dense n= 0.240 P2= 2.34"				
	0.1	20	0.1500	6.24		Shallow Concentrated Flow, shallow concentrated				
_						Unpaved Kv= 16.1 fps				
	10.2	120	Total							

Subcatchment 10S: Area #4 (AP #3)


Summary for Subcatchment 11S: Area #5 (AP #4)

Runoff = 0.45 cfs @ 12.09 hrs, Volume= 0.030 af, Depth= 1.52"

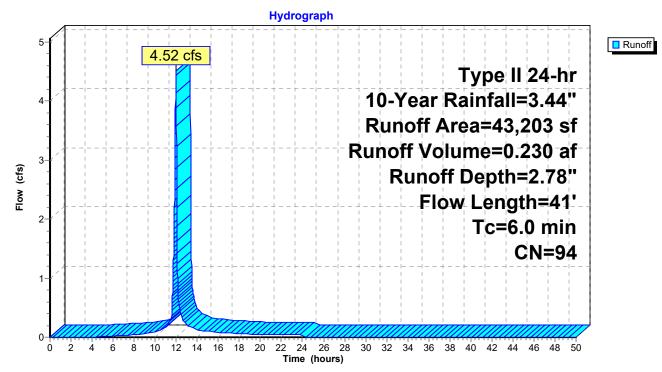
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.44"

_	A	rea (sf)	CN I	Description						
_		3,347	80 ;	>75% Grass cover, Good, HSG D						
6,960 79 Woods, Fair, HSG D										
10,307 79 Weighted Average										
10,307 100.00% Pervious Area						а				
_	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
	15.0	100	0.0730	0.11		Sheet Flow, sheet flow				
_	1.2	320	0.0730	4.35		Woods: Light underbrush n= 0.400 P2= 2.34" Shallow Concentrated Flow, Shallow Concentrated Flow Unpaved Kv= 16.1 fps				
	16.2	420	Total							

Subcatchment 11S: Area #5 (AP #4)

Prepared by Marathon Engineering HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions LLC

Summary for Subcatchment 13S: Area 2B

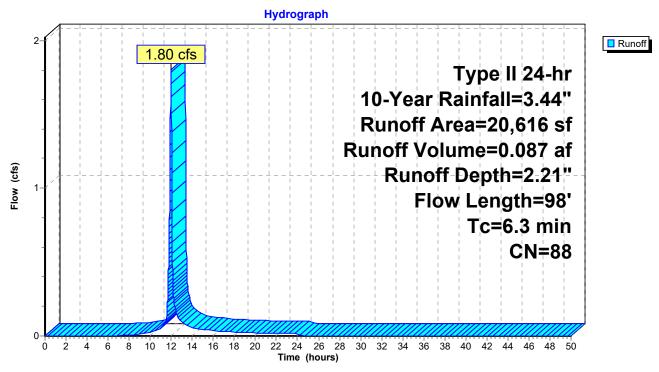

Runoff = 4.52 cfs @ 11.97 hrs, Volume= 0 Routed to Pond 3P : Infiltration Basin

0.230 af, Depth= 2.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.44"

A	vrea (sf)	CN E	escription						
	33,580	98 F	8 Paved parking, HSG D						
	9,623	80 >	75% Gras	s cover, Go	bod, HSG D				
	43,203	94 V	Veighted A	verage					
	9,623	2	2.27% Per	vious Area					
	33,580	7	7.73% Imp	ervious Ar	ea				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
0.5	10	0.5000	0.33		Sheet Flow, sheet flow				
					Grass: Short n= 0.150 P2= 2.34"				
1.6	15	0.0667	0.16		Sheet Flow, sheet flow lawn				
					Grass: Short n= 0.150 P2= 2.34"				
1.4	16	0.2400	0.19		Sheet Flow, detention pond slope				
					Grass: Dense n= 0.240 P2= 2.34"				
3.5	41	Total, I	ncreased t	o minimum	Tc = 6.0 min				

Subcatchment 13S: Area 2B


Summary for Subcatchment 14S: Area #7 (AP #2)

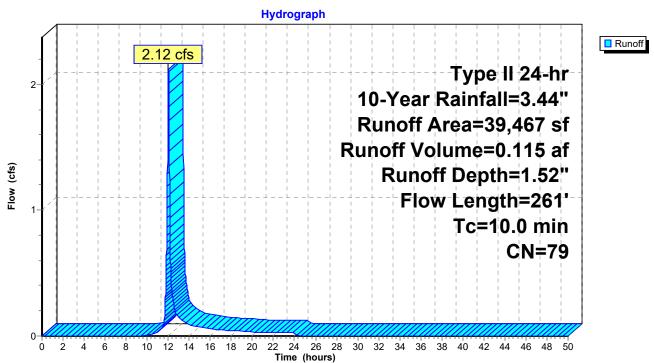
Runoff = 1.80 cfs @ 11.97 hrs, Volume= 0.087 af, Depth= 2.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.44"

A	rea (sf)	CN D	escription						
	8,749	98 F	Paved parking, HSG D						
	11,867	80 >	75% Gras	s cover, Go	ood, HSG D				
	20,616	88 V	Veighted A	verage					
	11,867	5	7.56% Per	vious Area					
	8,749	4	2.44% Imp	pervious Are	ea				
_									
Tc	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
0.4	34	0.0588	1.46		Sheet Flow, impervious				
					Smooth surfaces n= 0.011 P2= 2.34"				
5.9	64	0.1090	0.18		Sheet Flow, sheet flow grass				
					Grass: Dense n= 0.240 P2= 2.34"				
6.3	98	Total							

Subcatchment 14S: Area #7 (AP #2)

Summary for Subcatchment 15S: Area #6

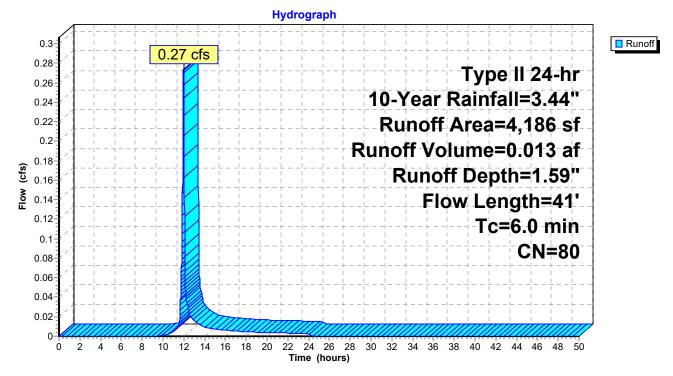

Runoff = 2.12 cfs @ 12.02 hrs, Volume= Routed to Link 6L : Analysis Point #1 0.115 af, Depth= 1.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.44"

_	A	rea (sf)	CN E	Description						
		1,249	98 F	Paved parking, HSG D						
		24,099	80 >	•75% Gras	s cover, Go	bod, HSG D				
_		14,119	77 V	Voods, Go	od, HSG D					
		39,467	79 V	Veighted A	verage					
		38,218	ç	96.84% Per	vious Area					
		1,249	3	8.16% Impe	ervious Are	a				
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	9.0	100	0.0925	0.18		Sheet Flow, sheet flow				
						Grass: Dense n= 0.240 P2= 2.34"				
	0.7	64	0.0100	1.61		Shallow Concentrated Flow, concentrated				
						Unpaved Kv= 16.1 fps				
	0.3	97	0.1600	6.44		Shallow Concentrated Flow, concentrated				
_						Unpaved Kv= 16.1 fps				
	10.0	004	T · ·							

10.0 261 Total

Subcatchment 15S: Area #6


Summary for Subcatchment 16S: Area 2A

Runoff = 0.27 cfs @ 11.98 hrs, Volume= Routed to Pond 3P : Infiltration Basin 0.013 af, Depth= 1.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.44"

A	rea (sf)	CN E	Description							
	64	98 F	Paved parking, HSG D							
	4,122	80 >	>75% Grass cover, Good, HSG D							
	4,186	80 V	Veighted A	verage						
	4,122	9	8.47% Per	vious Area						
	64	1	.53% Impe	ervious Area	a					
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
0.5	10	0.5000	0.33		Sheet Flow, sheet flow					
					Grass: Short n= 0.150 P2= 2.34"					
1.6	15	0.0667	0.16		Sheet Flow, sheet flow lawn					
					Grass: Short n= 0.150 P2= 2.34"					
1.4	16	0.2400	0.19		Sheet Flow, detention pond slope					
					Grass: Dense n= 0.240 P2= 2.34"					
3.5	41	Total, Increased to minimum Tc = 6.0 min								

Subcatchment 16S: Area 2A

Summary for Pond 1P: Detention Pond

[79] Warning: Submerged Pond 5P Primary device # 1 INLET by 2.90'

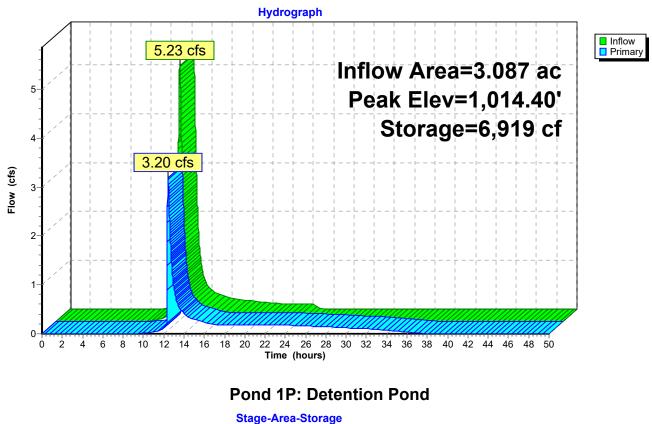
Inflow Area	a =	3.087 ac, 22.94% Impervious, Inflow Depth = 1.78" for 10-Year ev	/ent				
Inflow	=	5.23 cfs @ 12.20 hrs, Volume= 0.459 af					
Outflow	=	3.20 cfs @ 12.43 hrs, Volume= 0.459 af, Atten= 39%, Lag=	13.8 min				
Primary	=	3.20 cfs @ 12.43 hrs, Volume= 0.459 af					
Routed to Pond 3P : Infiltration Basin							

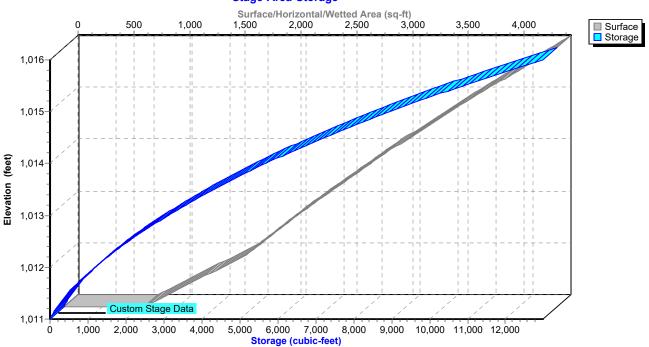
Routing by Stor-Ind method, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Peak Elev= 1,014.40' @ 12.43 hrs Surf.Area= 3,203 sf Storage= 6,919 cf

Plug-Flow detention time= 296.2 min calculated for 0.459 af (100% of inflow) Center-of-Mass det. time= 296.2 min (1,146.5 - 850.3)

Volume	Invei	rt Avail.Sto	rage Stora	ge Description	
#1	1,011.00)' 12,98	38 cf Custo	om Stage Data (Pri	smatic)Listed below (Recalc)
Elevatio (fee 1,011.0 1,012.0 1,013.0 1,014.0 1,015.0 1,016.0	t) 0 0 0 0 0 0	Surf.Area (sq-ft) 721 1,632 2,239 2,909 3,637 4,421	Inc.Store (cubic-feet) 0 1,177 1,936 2,574 3,273 4,029	Cum.Store (cubic-feet) 0 1,177 3,112 5,686 8,959 12,988	
<u>Device</u> #1 #2 #3	Routing Primary Device 1 Device 1	1,011.00' 1,011.00' 1,011.00' 1,014.20'	Outlet Devi 18.0" Rou L= 42.0' C Inlet / Outlet n= 0.013, F 2.0" Vert. L 30.0" x 30.	ces nd Culvert MP, mitered to con t Invert= 1,011.00' Flow Area= 1.77 sf	

Primary OutFlow Max=3.19 cfs @ 12.43 hrs HW=1,014.40' (Free Discharge)


-**1=Culvert** (Passes 3.19 cfs of 12.23 cfs potential flow)


2=Low Flow (Orifice Controls 0.19 cfs @ 8.77 fps)

-3=High Flow (Weir Controls 3.00 cfs @ 1.48 fps)

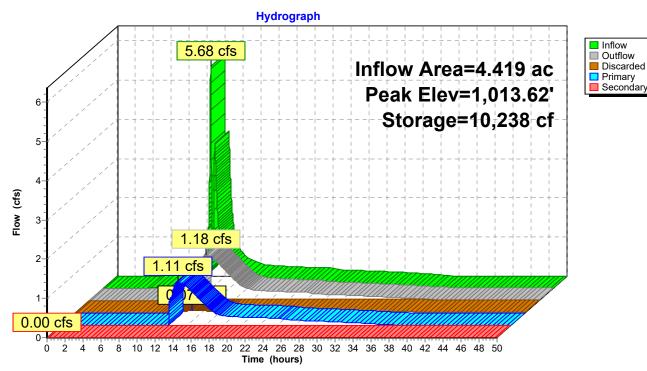
Prepared by Marathon Engineering HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions LLC

Summary for Pond 3P: Infiltration Basin

[81] Warning: Exceeded Pond 1P by 0.96' @ 37.45 hrs

Inflow Area =	4.419 ac, 3	34.53% Impervi	ous, Inflow De	epth = 2.00"	for 10-Year event
Inflow =	5.68 cfs @	11.97 hrs, Vo	lume=	0.738 af	
Outflow =	1.18 cfs @	13.03 hrs, Vo	lume=	0.660 af, Atte	en= 79%, Lag= 63.7 min
Discarded =	0.07 cfs @	13.03 hrs, Vo	lume=	0.119 af	
Primary =	1.11 cfs @	13.03 hrs, Vo	lume=	0.541 af	
Routed to Link	6L : Analysis	Point #1			
Secondary =	0.00 cfs @	0.00 hrs, Vo	lume=	0.000 af	
Routed to Link 6L : Analysis Point #1					

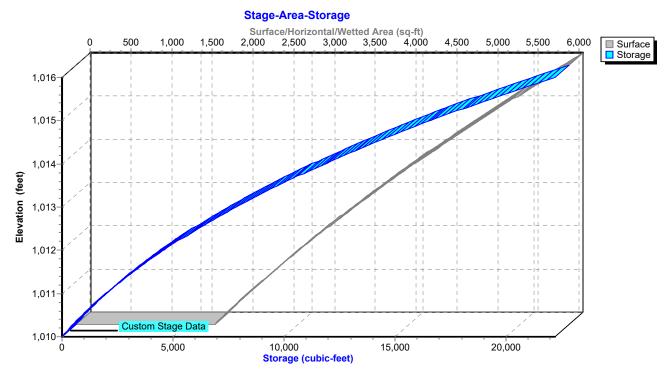
Routing by Stor-Ind method, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Peak Elev= 1,013.62' @ 13.03 hrs Surf.Area= 4,080 sf Storage= 10,238 cf


Plug-Flow detention time= 284.1 min calculated for 0.660 af (89% of inflow) Center-of-Mass det. time= 183.8 min (1,195.4 - 1,011.7)

Volume	Invert	Avail.Sto	rage Storage	e Description		
#1	1,010.00'	22,22	25 cf Custor	n Stage Data (Con	ic) Listed below (Red	calc)
Elevatio	n Su	ırf.Area	Inc.Store	Cum.Store	Wet.Area	
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)	
1,010.0	0	1,701	0	0	1,701	
1,011.0	0	2,285	1,986	1,986	2,306	
1,012.0	0	2,924	2,598	4,584	2,970	
1,013.0	0	3,621	3,266	7,850	3,696	
1,014.0		4,374	3,992	11,842	4,481	
1,015.0		5,183	4,773	16,614	5,327	
1,016.0	0	6,049	5,610	22,225	6,232	
Device	Routing	Invert	Outlet Device	es		
#1	Primary	1,005.70'	24.0" Roun	d Culvert		
			L= 30.0' CN	/IP, square edge he	adwall, Ke= 0.500	
					1,003.00' S= 0.090	0 '/' Cc= 0.900
				ow Area= 3.14 sf		
#2	Device 1	1,012.00'		termediate Flow		
				eir flow at low head		
#3	Device 1	1,013.70'		" Horiz. High Flow		
				eir flow at low head		
#4	Secondary	1,014.30'		Spillway, Cv= 2.62	2 (C= 3.28)	
			Head (feet)			
	D : 1 1	4 9 4 9 9 9		15.00 21.00		
#5	Discarded	1,010.00'			urface area from 1,0	010.00 [°] - 1,016.00'
				to Groundwater Ele		
			Excluded Su	rface area = 1,701	SI	

Discarded OutFlow Max=0.07 cfs @ 13.03 hrs HW=1,013.62' (Free Discharge) **5=Exfiltration** (Controls 0.07 cfs)

Primary OutFlow Max=1.11 cfs @ 13.03 hrs HW=1,013.62' (Free Discharge) 1=Culvert (Passes 1.11 cfs of 39.79 cfs potential flow) 2=Intermediate Flow (Orifice Controls 1.11 cfs @ 5.64 fps) 3=High Flow (Controls 0.00 cfs)


Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=1,010.00' (Free Discharge) 4=Emergency Spillway (Controls 0.00 cfs)

Pond 3P: Infiltration Basin

Prepared by Marathon Engineering HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions LLC

Pond 3P: Infiltration Basin

Summary for Pond 5P: Bioretention Basin

Inflow Ard Inflow Outflow Primary Route	= = =	1.02 cfs @ 12 1.02 cfs @ 12	2.30 hrs, Volum 2.32 hrs, Volum 2.32 hrs, Volum	ne= 0.11 ne= 0.08	= 2.58" for 10-Year event 1 af 8 af, Atten= 1%, Lag= 1.0 min 8 af				
	Routing by Stor-Ind method, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Peak Elev= 1,015.58' @ 12.32 hrs Surf.Area= 1,270 sf Storage= 1,118 cf								
Center-of	Plug-Flow detention time= 129.3 min calculated for 0.088 af (79% of inflow) Center-of-Mass det. time= 47.0 min(866.5 - 819.5)								
Volume #1	Inver 1,014.50		rage Storage		inmatic) istad balaw (Basala)				
#1	1,014.30	1,00	of Custom	Slage Dala (PI	ismatic)Listed below (Recalc)				
Elevatio (feet		Surf.Area	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)					
1,014.5		<u>(sq-ft)</u> 804		<u>(1991-51005)</u> 0					
1,014.5		1,007	0 453	453					
1,016.0		1,456	1,232	1,684					
1,010.00	0	1,400	1,202	1,004					
Device	Routing	Invert	Outlet Devices	;					
#1	#1 Primary 1,011.50' 12.0" Round Culvert L= 27.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,011.50' / 1,011.00' S= 0.0185 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf #2 Device 1 1,015.50' 24.0" Horiz. Orifice/Grate X 2.00 C= 0.600								
	Primary OutFlow Max=1.02 cfs @ 12.32 hrs HW=1,015.58' (Free Discharge)								
1=Cul	vert (Pass	ses 1.02 cfs of	7.16 cfs potentia	al flow)					

1=Culvert (Passes 1.02 cfs of 7.16 cfs potential flow) **2=Orifice/Grate** (Weir Controls 1.02 cfs @ 0.95 fps)

Flow (cfs)

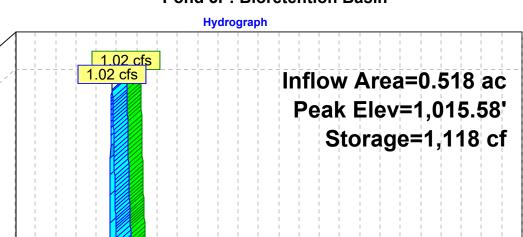
0

ò

2

4 6 8

Inflow

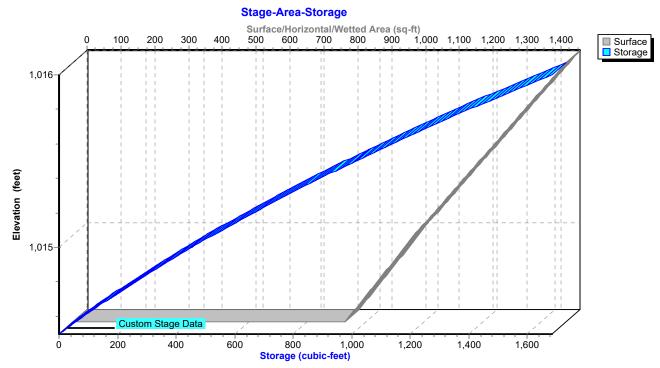

Primary

Prepared by Marathon Engineering HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions LLC

10 12 14 16 18

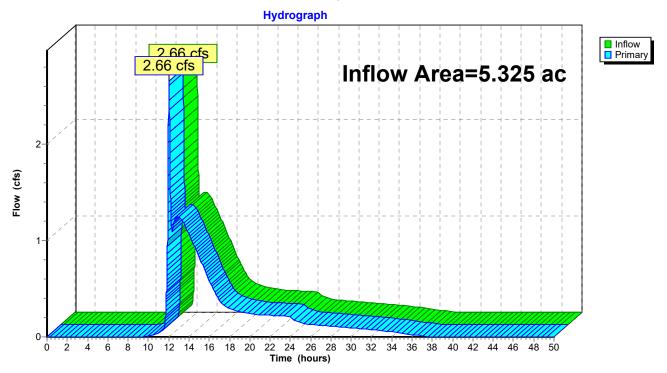
20

22


Pond 5P: Bioretention Basin

30 32 34 36 38 40 42 44 46 48 50

24 26 28


Time (hours)

Summary for Link 6L: Analysis Point #1

Inflow Area =	5.325 ac, 29.19% Impervic	us, Inflow Depth = 1.48"	for 10-Year event
Inflow =	2.66 cfs @ 12.03 hrs, Vol	ume= 0.656 af	
Primary =	2.66 cfs @ 12.03 hrs, Vol	ume= 0.656 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs

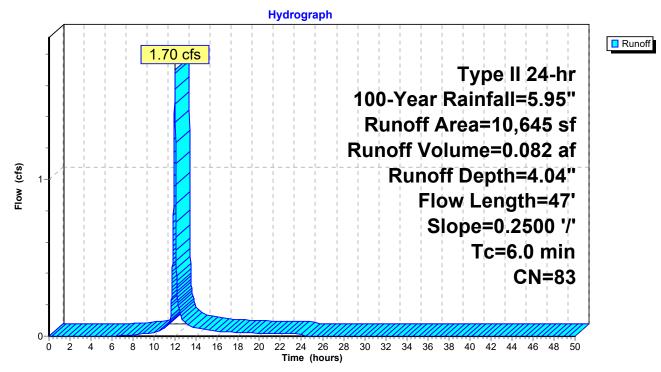
Link 6L: Analysis Point #1

1495 Drainage Proposed 2023.10.09	Type II 24-hr	100-Year Rainfall=5.95"
Prepared by Marathon Engineering		Printed 10/11/2023
HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solution	tions LLC	Page 64

Time span=0.00-50.00 hrs, dt=0.01 hrs, 5001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment2S: Area #3 Flow Length=47'	Runoff Area=10,645 sf 18.60% Impervious Runoff Depth=4.04" Slope=0.2500 '/' Tc=6.0 min CN=83 Runoff=1.70 cfs 0.082 af
Subcatchment 4S: Area #2 F	Runoff Area=22,581 sf 67.11% Impervious Runoff Depth=5.02" low Length=790' Tc=35.6 min CN=92 Runoff=1.94 cfs 0.217 af
	Runoff Area=111,872 sf 14.02% Impervious Runoff Depth=3.94" lope=0.0586 '/' Tc=24.2 min CN=82 Runoff=10.03 cfs 0.843 af
Subcatchment10S: Area #4 (AP #3) F	Runoff Area=26,877 sf 39.06% Impervious Runoff Depth=4.47" low Length=120' Tc=10.2 min CN=87 Runoff=4.03 cfs 0.230 af
Subcatchment11S: Area #5 (AP #4) Flow Length=420'	Runoff Area=10,307 sf 0.00% Impervious Runoff Depth=3.64" Slope=0.0730 '/' Tc=16.2 min CN=79 Runoff=1.07 cfs 0.072 af
Subcatchment 13S: Area 2B	Runoff Area=43,203 sf 77.73% Impervious Runoff Depth=5.25" Flow Length=41' Tc=6.0 min CN=94 Runoff=8.19 cfs 0.434 af
Subcatchment14S: Area #7 (AP #2)	Runoff Area=20,616 sf 42.44% Impervious Runoff Depth=4.58" Flow Length=98' Tc=6.3 min CN=88 Runoff=3.58 cfs 0.181 af
Subcatchment15S: Area #6 F	Runoff Area=39,467 sf 3.16% Impervious Runoff Depth=3.64" low Length=261' Tc=10.0 min CN=79 Runoff=5.02 cfs 0.274 af
Subcatchment 16S: Area 2A	Runoff Area=4,186 sf 1.53% Impervious Runoff Depth=3.74" Flow Length=41' Tc=6.0 min CN=80 Runoff=0.63 cfs 0.030 af
Pond 1P: Detention Pond	Peak Elev=1,014.69' Storage=7,872 cf Inflow=11.65 cfs 1.037 af Outflow=11.47 cfs 1.037 af
	eak Elev=1,014.27' Storage=13,046 cf Inflow=12.90 cfs 1.583 af 366 af Secondary=0.00 cfs 0.000 af Outflow=12.66 cfs 1.500 af
Pond 5P: Bioretention Basin	Peak Elev=1,015.63' Storage=1,176 cf Inflow=1.94 cfs 0.217 af Outflow=1.93 cfs 0.194 af
Link 6L: Analysis Point #1	Inflow=13.80 cfs 1.641 af Primary=13.80 cfs 1.641 af
	c Runoff Volume = 2.363 af Average Runoff Depth = 4.26" 9.99% Pervious = 4.656 ac 30.01% Impervious = 1.996 ac

Summary for Subcatchment 2S: Area #3


Runoff = 1.70 cfs @ 11.97 hrs, Volume= Routed to Pond 3P : Infiltration Basin

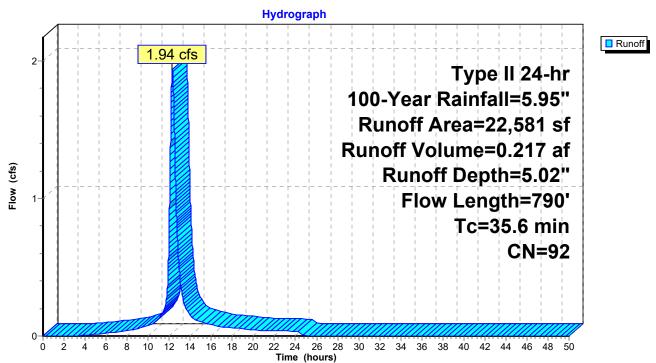
0.082 af, Depth= 4.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.95"

A	rea (sf)	CN E	Description						
	1,980	98 F	aved park	ing, HSG D)				
	8,665	80 >	75% Gras	s cover, Go	ood, HSG D				
	10,645	83 V	Veighted A	verage					
	8,665	8	1.40% Per	vious Area					
	1,980	1	8.60% Imp	pervious Are	ea				
_		~		•					
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
3.3	47	0.2500	0.24		Sheet Flow, sheet flow				
					Grass: Dense n= 0.240	P2= 2.34"			
3.3	47	Total, I	ncreased t	o minimum	Tc = 6.0 min				

Subcatchment 2S: Area #3

Summary for Subcatchment 4S: Area #2


Runoff = 1.94 cfs @ 12.30 hrs, Volume= Routed to Pond 5P : Bioretention Basin

0.217 af, Depth= 5.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.95"

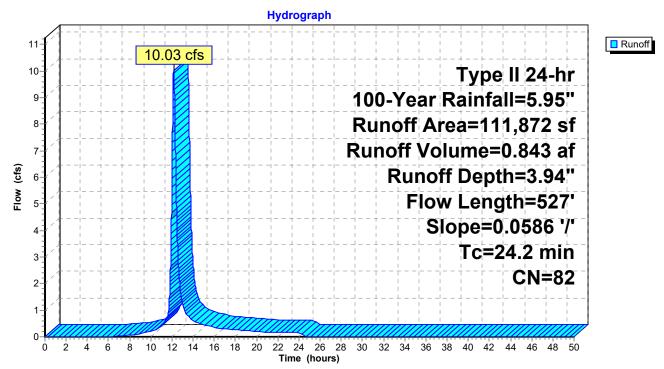
A	rea (sf)	CN E	Description						
	15,153		1 0,						
	7,428	80 >	15% Gras	s cover, Go	ood, HSG D				
	22,581	92 V	Veighted A	verage					
	7,428	3	2.89% Per	vious Area					
	15,153	6	7.11% Imp	pervious Are	ea				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
34.7	150	0.0200	0.07		Sheet Flow, Sheet flow				
					Woods: Light underbrush n= 0.400 P2= 2.34"				
0.1	21	0.0200	2.87		Shallow Concentrated Flow, Shallow concentrate				
					Paved Kv= 20.3 fps				
0.8	619	0.0300	13.38	23.65	Pipe Channel, storm pipe system				
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'				
					n= 0.010 PVC, smooth interior				
35.6	790	Total			· · · · · · · · · · · · · · · · · · ·				

Subcatchment 4S: Area #2

Prepared by Marathon Engineering HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions LLC

 Type II 24-hr
 100-Year Rainfall=5.95"

 Printed
 10/11/2023


 ns LLC
 Page 67

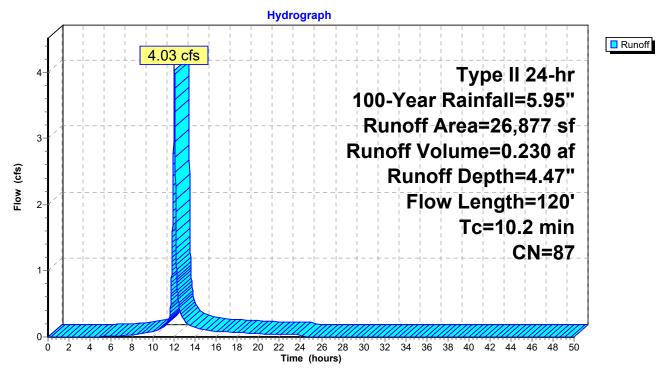
Summary for Subcatchment 6S: Area #1

Runoff = 10.03 cfs @ 12.18 hrs, Volume= Routed to Pond 1P : Detention Pond 0.843 af, Depth= 3.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.95"

 A	rea (sf)	CN I	Description		
	15,686	98	Paved park	ing, HSG D	
	47,047	79	Noods, Fai	r, HSG D	
	49,139	80 :	>75% Gras	s cover, Go	ood, HSG D
1	11,872		Neighted A		
	96,186			rvious Area	
	15,686		14.02% Imp	pervious Are	ea
т.	1			0	Description
Tc	Length	Slope		Capacity	Description
 <u>(min)</u>	(feet)	<u>(ft/ft)</u>		(cfs)	
22.6	150	0.0586	0.11		Sheet Flow, sheet flow
0.4	400	0.0500	2.00		Woods: Light underbrush n= 0.400 P2= 2.34"
0.4	100	0.0586	3.90		Shallow Concentrated Flow, Concentrated flow lawn
0.5	447	0.0500	2.00		Unpaved Kv= 16.1 fps
0.5	117	0.0586	3.90		Shallow Concentrated Flow, concetrated flow lawn Unpaved Kv= 16.1 fps
0.1	24	0.0586	4.91		Shallow Concentrated Flow, Shallow Concentrated driveway
0.1	24	0.0000	4.91		Paved Kv= 20.3 fps
0.6	136	0.0586	3.90		Shallow Concentrated Flow, Concentrated flow lawn
0.0	100	0.0000	0.00		Unpaved Kv= 16.1 fps
 24.2	527	Total			

Subcatchment 6S: Area #1

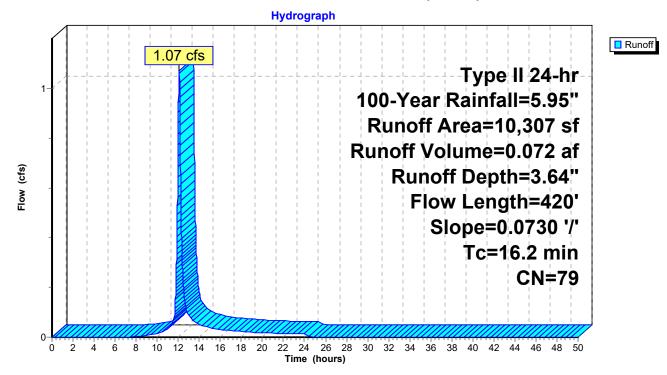

Summary for Subcatchment 10S: Area #4 (AP #3)

Runoff = 4.03 cfs @ 12.02 hrs, Volume= 0.230 af, Depth= 4.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.95"

_	A	rea (sf)	CN E	Description		
		16,379	80 >	75% Gras	s cover, Go	ood, HSG D
_		10,498	98 F	Paved park	ing, HSG D	
		26,877	87 V	Veighted A	verage	
		16,379	6	0.94% Per	vious Area	
		10,498	3	9.06% Imp	pervious Ar	ea
	_		. .			
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.1	100	0.0700	0.16		Sheet Flow, sheet flow
						Grass: Dense n= 0.240 P2= 2.34"
	0.1	20	0.1500	6.24		Shallow Concentrated Flow, shallow concentrated
_						Unpaved Kv= 16.1 fps
	10.2	120	Total			

Subcatchment 10S: Area #4 (AP #3)

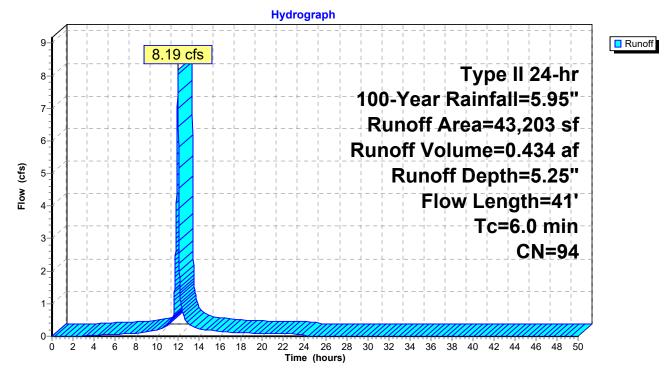

Summary for Subcatchment 11S: Area #5 (AP #4)

Runoff = 1.07 cfs @ 12.08 hrs, Volume= 0.072 af, Depth= 3.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.95"

_	A	rea (sf)	CN	Description							
		3,347		>75% Grass cover, Good, HSG D							
_		6,960	79	<u>Woods, Fai</u>	r, HSG D						
		10,307		Weighted A							
		10,307		100.00% Pe	ervious Are	а					
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description					
	15.0	100	0.0730	0.11		Sheet Flow, sheet flow					
	1.2	320	0.0730	4.35		Woods: Light underbrush n= 0.400 P2= 2.34" Shallow Concentrated Flow, Shallow Concentrated Flow Unpaved Kv= 16.1 fps					
_	16.2	420	Total								

Subcatchment 11S: Area #5 (AP #4)

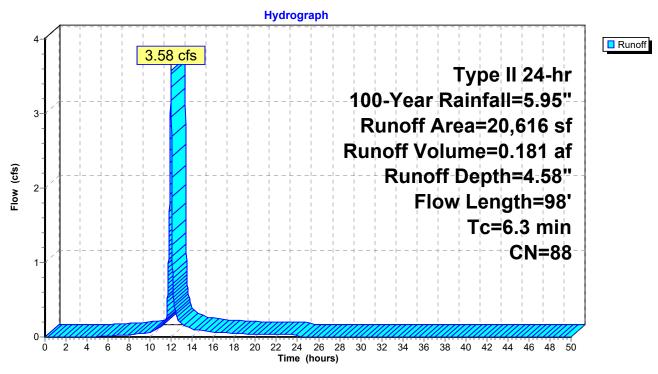

Summary for Subcatchment 13S: Area 2B

Runoff = 8.19 cfs @ 11.97 hrs, Volume= Routed to Pond 3P : Infiltration Basin 0.434 af, Depth= 5.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.95"

 A	rea (sf)	CN E	Description						
	33,580	98 F	98 Paved parking, HSG D						
	9,623	80 >	75% Gras	s cover, Go	bod, HSG D				
	43,203	94 V	Veighted A	verage					
	9,623	2	2.27% Per	vious Area					
	33,580	7	7.73% Imp	pervious Ar	ea				
_		<u>.</u>		• •	— • • •				
Тс	Length	Slope	Velocity	Capacity	Description				
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
 0.5	10	0.5000	0.33		Sheet Flow, sheet flow				
					Grass: Short n= 0.150 P2= 2.34"				
1.6	15	0.0667	0.16		Sheet Flow, sheet flow lawn				
					Grass: Short n= 0.150 P2= 2.34"				
1.4	16	0.2400	0.19		Sheet Flow, detention pond slope				
					Grass: Dense n= 0.240 P2= 2.34"				
3.5	41	Total, I	ncreased t	o minimum	Tc = 6.0 min				

Subcatchment 13S: Area 2B


Summary for Subcatchment 14S: Area #7 (AP #2)

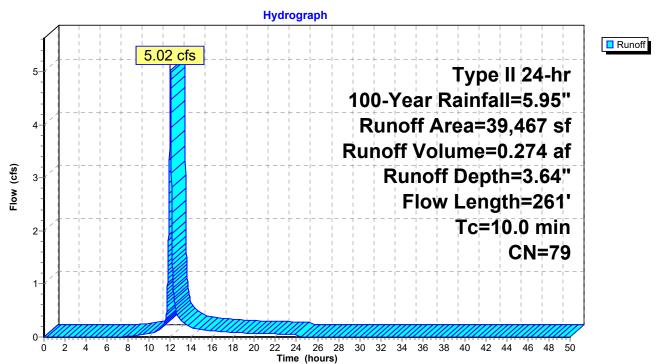
Runoff = 3.58 cfs @ 11.97 hrs, Volume= 0.181 af, Depth= 4.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.95"

Area	ı (sf)	CN E	Description						
8	,749	98 F	Paved parking, HSG D						
11	,867	80 >	75% Gras	s cover, Go	ood, HSG D				
20	,616	88 V	Veighted A	verage					
11	,867	5	7.56% Per	vious Area					
8	,749	4	2.44% Imp	pervious Ar	ea				
	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
0.4	34	0.0588	1.46		Sheet Flow, impervious				
5.9	64	0.1090	0.18		Smooth surfaces n= 0.011 P2= 2.34" Sheet Flow, sheet flow grass Grass: Dense n= 0.240 P2= 2.34"				
6.3	98	Total							

Subcatchment 14S: Area #7 (AP #2)

HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions LLC


Summary for Subcatchment 15S: Area #6

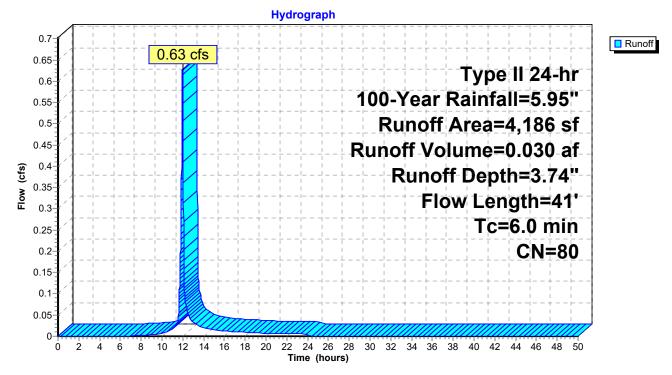
Runoff = 5.02 cfs @ 12.01 hrs, Volume= Routed to Link 6L : Analysis Point #1 0.274 af, Depth= 3.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.95"

A	Area (sf)	CN E	Description		
	1,249	98 F	Paved park	ing, HSG D	
	24,099	80 >	75% Gras	s cover, Go	ood, HSG D
	14,119	77 V	Voods, Go	od, HSG D	
	39,467	79 V	Veighted A	verage	
	38,218	g	6.84% Per	vious Area	
	1,249	3	6.16% Impe	ervious Area	a
Tc	5	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
9.0	100	0.0925	0.18		Sheet Flow, sheet flow
					Grass: Dense n= 0.240 P2= 2.34"
0.7	64	0.0100	1.61		Shallow Concentrated Flow, concentrated
					Unpaved Kv= 16.1 fps
0.3	97	0.1600	6.44		Shallow Concentrated Flow, concentrated
					Unpaved Kv= 16.1 fps
10.0	261	Total			

Subcatchment 15S: Area #6

HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions LLC


Summary for Subcatchment 16S: Area 2A

Runoff = 0.63 cfs @ 11.97 hrs, Volume= Routed to Pond 3P : Infiltration Basin 0.030 af, Depth= 3.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.95"

Α	rea (sf)	CN E	Description						
	64	98 F	98 Paved parking, HSG D						
	4,122	80 >	75% Gras	s cover, Go	bod, HSG D				
	4,186	80 V	Veighted A	verage					
	4,122	9	8.47% Per	vious Area					
	64	1	.53% Impe	ervious Are	a				
Тс	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
0.5	10	0.5000	0.33		Sheet Flow, sheet flow				
					Grass: Short n= 0.150 P2= 2.34"				
1.6	15	0.0667	0.16		Sheet Flow, sheet flow lawn				
					Grass: Short n= 0.150 P2= 2.34"				
1.4	16	0.2400	0.19		Sheet Flow, detention pond slope				
					Grass: Dense n= 0.240 P2= 2.34"				
3.5	41	Total, I	ncreased t	o minimum	Tc = 6.0 min				

Subcatchment 16S: Area 2A

Summary for Pond 1P: Detention Pond

[79] Warning: Submerged Pond 5P Primary device # 1 INLET by 3.19'

Inflow Area = 3.087 ac, 22.94% Impervious, Inflow Depth = 4.03" for 100-Year event

 11.65 cfs @
 12.18 hrs, Volume=
 1.037 af

 11.47 cfs @
 12.21 hrs, Volume=
 1.037 af,

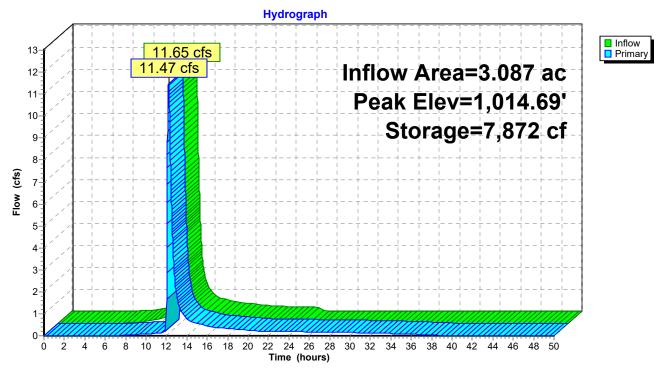
 Inflow = Outflow = 1.037 af, Atten= 2%, Lag= 1.8 min Primary = 11.47 cfs @ 12.21 hrs, Volume= 1.037 af Routed to Pond 3P : Infiltration Basin

Routing by Stor-Ind method, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Peak Elev= 1,014.69' @ 12.21 hrs Surf.Area= 3,412 sf Storage= 7,872 cf

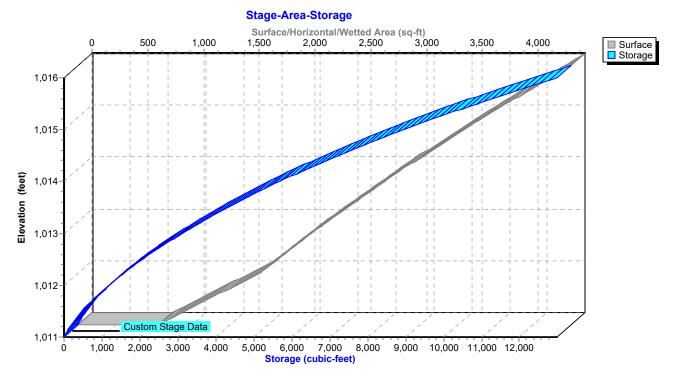
Plug-Flow detention time= 159.9 min calculated for 1.037 af (100% of inflow) Center-of-Mass det. time= 159.9 min (985.6 - 825.7)

Volume	Invert	Avail.Sto	rage Storag	e Description	
#1	1,011.00'	12,98	38 cf Custor	m Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio (feet		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
1,011.0		721 1,632	0 1,177	0 1,177	
1,013.0 1,014.0		2,239 2,909	1,936 2,574	3,112 5,686	
1,015.0 1,016.0		3,637 4,421	3,273 4,029	8,959 12,988	
Device	Routing	Invert	Outlet Devic	es	
#1	Primary	1,011.00'	Inlet / Outlet	/IP, mitered to co	nform to fill, Ke= 0.700 ' / 1,010.00' S= 0.0238 '/' Cc= 0.900
#2 #3	Device 1 Device 1	1,011.00' 1,014.20'	2.0" Vert. Lo 30.0" x 30.0		00 Limited to weir flow at low heads bw C= 0.600

Primary OutFlow Max=11.47 cfs @ 12.21 hrs HW=1,014.69' (Free Discharge)


-**1=Culvert** (Passes 11.47 cfs of 12.88 cfs potential flow)

-2=Low Flow (Orifice Controls 0.20 cfs @ 9.15 fps)


-3=High Flow (Weir Controls 11.27 cfs @ 2.29 fps)

HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions LLC

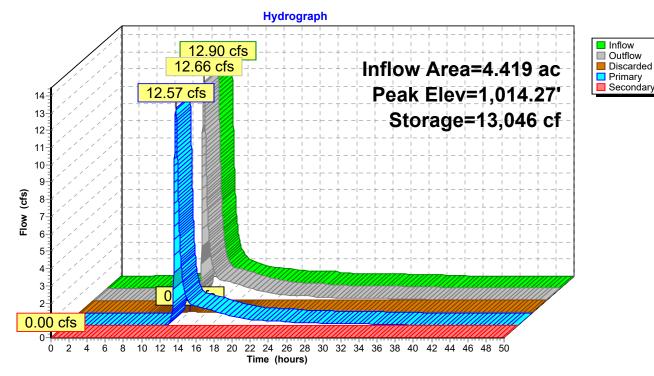
Pond 1P: Detention Pond

Summary for Pond 3P: Infiltration Basin

[81] Warning: Exceeded Pond 1P by 0.96' @ 39.60 hrs

Inflow Area =	4.419 ac, 3	34.53% Impervious,	Inflow Depth = 4.30)" for 100-Year event
Inflow =	12.90 cfs @	12.20 hrs, Volume	= 1.583 af	
Outflow =	12.66 cfs @	12.24 hrs, Volume	= 1.500 af, A	Atten= 2%, Lag= 2.5 min
Discarded =	0.09 cfs @	12.24 hrs, Volume	= 0.134 af	-
Primary =	12.57 cfs @	12.24 hrs, Volume	= 1.366 af	
Routed to Link	6L : Analysis	Point #1		
Secondary =	0.00 cfs @	0.00 hrs, Volume	= 0.000 af	
Routed to Link	6L : Analysis	Point #1		

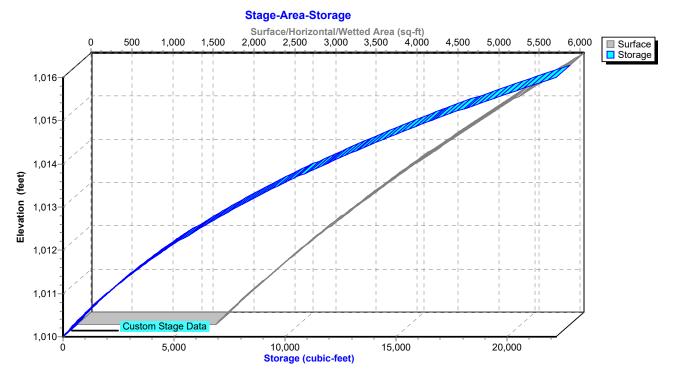
Routing by Stor-Ind method, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Peak Elev= 1,014.27' @ 12.24 hrs Surf.Area= 4,585 sf Storage= 13,046 cf


Plug-Flow detention time= 153.1 min calculated for 1.500 af (95% of inflow) Center-of-Mass det. time= 94.6 min (1,007.0 - 912.4)

Volume	Invert	Avail.Sto	rage Storage I	Description		
#1	1,010.00'	22,22	25 cf Custom	Stage Data (Coni	c) Listed below (Rec	alc)
Elevation (feet		rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
1,010.00 1,011.00 1,012.00 1,013.00 1,014.00 1,015.00 1,016.00	0 0 0 0 0	1,701 2,285 2,924 3,621 4,374 5,183 6,049	0 1,986 2,598 3,266 3,992 4,773 5,610	0 1,986 4,584 7,850 11,842 16,614 22,225	1,701 2,306 2,970 3,696 4,481 5,327 6,232	
Device	Routing	Invert	Outlet Devices			
#1	Primary	1,005.70'	Inlet / Outlet In	, square edge hea	adwall, Ke= 0.500 ,003.00' S= 0.0900	'/' Cc= 0.900
#2	Device 1	1,012.00'	6.0" Vert. Inte	rmediate Flow C flow at low heads	= 0.600	
#3	Device 1	1,013.70'	24.0" x 24.0" l	How at low heads Horiz. High Flow flow at low heads	C= 0.600	
#4	Secondary	1,014.30'	Emergency S Head (feet) 0. Width (feet) 1		(C= 3.28)	
#5	Discarded	1,010.00'	1.000 in/hr Ex Conductivity to			10.00' - 1,016.00'

Discarded OutFlow Max=0.09 cfs @ 12.24 hrs HW=1,014.27' (Free Discharge) **5=Exfiltration** (Controls 0.09 cfs)

Primary OutFlow Max=12.57 cfs @ 12.24 hrs HW=1,014.27' (Free Discharge) 1=Culvert (Passes 12.57 cfs of 41.62 cfs potential flow) 2=Intermediate Flow (Orifice Controls 1.34 cfs @ 6.84 fps) 3=High Flow (Weir Controls 11.22 cfs @ 2.47 fps)


Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=1,010.00' (Free Discharge) 4=Emergency Spillway (Controls 0.00 cfs)

Pond 3P: Infiltration Basin

Prepared by Marathon Engineering HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions LLC

Pond 3P: Infiltration Basin

Summary for Pond 5P: Bioretention Basin

Inflow Area = Inflow = Outflow = Primary = Routed to	1.94 cfs @ 1 1.93 cfs @ 1	2.30 hrs, Volum 2.31 hrs, Volum 2.31 hrs, Volum	ne= 0.2 ne= 0.1	= 5.02" for 100-Year event 17 af 94 af, Atten= 0%, Lag= 0.7 min 94 af				
	Routing by Stor-Ind method, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs Peak Elev= 1,015.63' @ 12.31 hrs Surf.Area= 1,290 sf Storage= 1,176 cf							
	Plug-Flow detention time= 90.1 min calculated for 0.194 af (89% of inflow) Center-of-Mass det. time= 36.0 min(837.4 - 801.4)							
Volume	Invert Avail.Sto	orage Storage I	Description					
#1 1,0				rismatic)Listed below (Recalc)				
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)					
1,014.50	804	0	0					
1,015.00	1,007	453	453					
1,016.00	1,456	1,232	1,684					
1,010.00	1,450	1,232	1,004					
Device Rou	ting Invert	Outlet Devices	;					
#1 Primary 1,011.50' 12.0" Round Culvert L= 27.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,011.50' / 1,011.00' S= 0.0185 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf #2 Device 1 1,015.50' 24.0" Horiz. Orifice/Grate X 2.00 C= 0.600 Limited to weir flow at low heads								
Primary OutFlow Max=1.93 cfs @ 12.31 hrs HW=1,015.63' (Free Discharge)								

1=Culvert (Passes 1.93 cfs of 7.21 cfs potential flow) **2=Orifice/Grate** (Weir Controls 1.93 cfs @ 1.18 fps)

Custom Stage Data

400

600

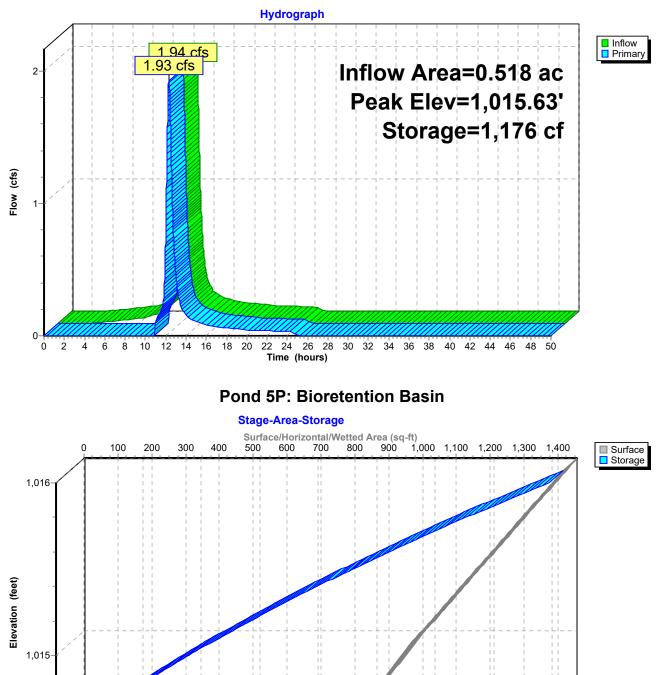
800

Storage (cubic-feet)

1.000

1.200

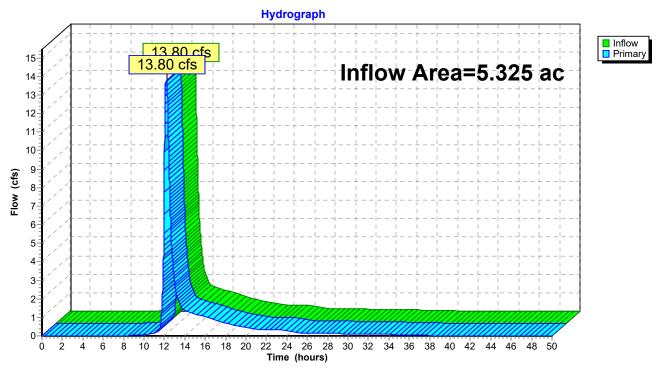
1.400


1.600

200

0

HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions LLC



Summary for Link 6L: Analysis Point #1

Inflow Are	a =	5.325 ac, 29.19% Impervious, Inflow Depth = 3.70" for 100-Year event
Inflow	=	13.80 cfs @ 12.21 hrs, Volume= 1.641 af
Primary	=	13.80 cfs (a) 12.21 hrs, Volume= 1.641 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-50.00 hrs, dt= 0.01 hrs

Link 6L: Analysis Point #1

TABLE OF CONTENTS

Project Reports

- 1 Routing Diagram
- 2 Rainfall Events Listing
- 3 Area Listing (all nodes)
- 4 Soil Listing (all nodes)
- 5 Ground Covers (all nodes)
- 6 Pipe Listing (all nodes)

1-Year Event

- 7 Node Listing
- 8 Subcat 2S: Area #3
- 9 Subcat 4S: Area #2
- 10 Subcat 6S: Area #1
- 12 Subcat 10S: Area #4 (AP #3)
- 13 Subcat 11S: Area #5 (AP #4)
- 14 Subcat 13S: Area 2B
- 15 Subcat 14S: Area #7 (AP #2)
- 16 Subcat 15S: Area #6
- 17 Subcat 16S: Area 2A
- 18 Pond 1P: Detention Pond
- 20 Pond 3P: Infiltration Basin
- 23 Pond 5P: Bioretention Basin
- 25 Link 6L: Analysis Point #1

2-Year Event

- 26 Node Listing
- 27 Subcat 2S: Area #3
- 28 Subcat 4S: Area #2
- 29 Subcat 6S: Area #1
- 31 Subcat 10S: Area #4 (AP #3)
- 32 Subcat 11S: Area #5 (AP #4)
- 33 Subcat 13S: Area 2B
- 34 Subcat 14S: Area #7 (AP #2)
- 35 Subcat 15S: Area #6
- 36 Subcat 16S: Area 2A
- 37 Pond 1P: Detention Pond
- 39 Pond 3P: Infiltration Basin
- 42 Pond 5P: Bioretention Basin
- 44 Link 6L: Analysis Point #1

<u>10-Year Event</u>

- 45 Node Listing
- 46 Subcat 2S: Area #3
- 47 Subcat 4S: Area #2
- 48 Subcat 6S: Area #1
- 50 Subcat 10S: Area #4 (AP #3)

1495 Drainage Proposed 2023.10.09

Prepared by Marathon Engineering HydroCAD® 10.20-2g s/n 10755 © 2022 HydroCAD Software Solutions LLC

- 51 Subcat 11S: Area #5 (AP #4)
- 52 Subcat 13S: Area 2B
- 53 Subcat 14S: Area #7 (AP #2)
- 54 Subcat 15S: Area #6
- 55 Subcat 16S: Area 2A
- 56 Pond 1P: Detention Pond
- 58 Pond 3P: Infiltration Basin
- 61 Pond 5P: Bioretention Basin
- 63 Link 6L: Analysis Point #1

100-Year Event

- 64 Node Listing
- 65 Subcat 2S: Area #3
- 66 Subcat 4S: Area #2
- 67 Subcat 6S: Area #1
- 69 Subcat 10S: Area #4 (AP #3)
- 70 Subcat 11S: Area #5 (AP #4)
- 71 Subcat 13S: Area 2B
- 72 Subcat 14S: Area #7 (AP #2)
- 73 Subcat 15S: Area #6
- 74 Subcat 16S: Area 2A
- 75 Pond 1P: Detention Pond
- 77 Pond 3P: Infiltration Basin
- 80 Pond 5P: Bioretention Basin
- 82 Link 6L: Analysis Point #1

 Project:
 Evergreen Apartments

 Project No.:
 1495-23

 By:
 AMF

 Date:
 10/9/2023

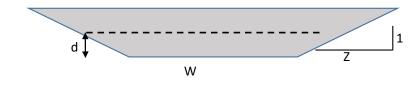
Channel Protection Volume (CP_v)

Provide 24-hour detention for the runoff from the 1-year design storm:

* The "Short-cut" sizing technique presented in Appendix B of NYSDEC's SMDM is used.

Total Area = Composite CN =	4.80 87.00	ac
$T_c =$	0.100	hrs
l _a =	0.299	in (per Table 4-1 in TR-55)
P =	2	in (per Figure 4.2 in SMDM)
I _a /P =	0.15	
Therefore, q _u =	1000	csm/in (per Exhibit 4-II in TR-55)
T (extended detention time) =	24	hrs
q_o/q_I (ratio of outflow to inflow) =	0.025	(per Figure B.1 in SMDM)
V_s/V_r (ratio of req. stor. Vol. to runoff vol.) =	0.647	(per Eq. (2.1.16) in SMDM)
Q_d (post dev. Runoff for 1yr storm) =	0.921	in (per Table 2-1 in TR-55)
Therefore, V _S =	0.239	ac-ft (per Eq. (2.1.17) in SMDM)
WQ _v Detention =	0.000	ac-ft
Net Required Volume =	0.239	ac-ft
Provided RRv=	0.170	ac-ft
Adjusted CPv=	0.069	ac-ft
Discharge Orifice Size		
Rate =		
		ired CP _V /24 hrs.
=	0.03	cfs
Average Head = (-	.S N.W.S.)/2
=	1.6	ft
Orifice Discharge		1/2
	Cd*A*(2g	
	Discharge	
		nt of Discharge (sharp edged orifice = 0.60)
	gravity (3	2.2)
	Head (ft)	a = af arifica (ftA2)
	Q/(Cd(2gl	a of orifice (ft^2) h) ^{1/2})
=	0.006	ft ²
– Diameter =	1.0	in
		use a 2 0 inch orifice

Therefore use a 2.0 inch orifice

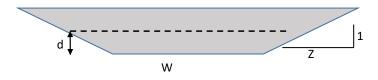


INFILTRATION BASIN EMERGENCY SPILLWAY

Design Storm: Design Storm Discharge (cfs):	100 year 14	
Swale Side Slope, Z:1 (H:V) Swale Slope (ft/ft) Manning's Coeff, n Design Flow Depth, d (ft) Channel Width, w (ft)	2 0.007 0.025 0.4 15	
Wetted Peritmeter, P (ft)	16.79	
Flow Area X-Section, A (sf)	6.32	
Hydraulic Radius, R (ft)	0.376	=(A/P)
Flow Velocity, V (ft/sec)	2.59	
Channel Capacity, Q (cf/sec)	16.39	=A x V

$$V = \frac{1.486}{n} * R^{2/3} * S$$

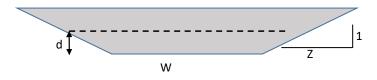
$$Q = V x A$$



DETENTION POND EMERGENCY SPILLWAY

Design Storm:	100 year	
Design Storm Discharge (cfs):	14	
Swale Side Slope, Z:1 (H:V)	2	
Swale Slope (ft/ft)	0.007	
Manning's Coeff, n	0.025	
Design Flow Depth, d (ft)	0.4	
Channel Width, w (ft)	15	
Wetted Peritmeter, P (ft)	16.79	
Flow Area X-Section, A (sf)	6.32	
, , ,		
Hydraulic Radius, R (ft)	0.376	=(A/P)
,,		())
Flow Velocity, V (ft/sec)	2.59	
	2.00	
Channel Capacity, Q (cf/sec)	16.39	=A x V
	10.00	
1 400		
$V = \frac{1.486}{3} * R^{2/2}$	³ * S	
n.		

$$Q = V \times A$$



BIORETENTION EMERGENCY SPILLWAY

Design Storm:	100 year	
Design Storm Discharge (cfs):	2	
Swale Side Slope, Z:1 (H:V)	2	
Swale Slope (ft/ft)	0.007	
Manning's Coeff, n	0.025	
Design Flow Depth, d (ft)	0.4	
Channel Width, w (ft)	5	
Wetted Peritmeter, P (ft)	6.79	
Flow Area X-Section, A (sf)	2.32	
Hydraulic Radius, R (ft)	0.342	=(A/P)
Flow Velocity, V (ft/sec)	2.43	
Channel Capacity, Q (cf/sec)	5.64	=A x V
$V = \frac{1.486}{2} * R^{2/2}$	3 * C	
$V = * R^{2/2}$	s S	

$$Q = V \times A$$

Version 1.8 Last Updated: 11/09/2015

Is this project subject to Chapter 10 of the NYS Design Manual (i.e. WQv is equal to postdevelopment 1 year runoff volume)?.....

Design Point

Design Point.		
P=	1.00	inch

F=	1.00	IIICII					
Breakdown of Subcatchments							
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Description	
1	4.28	1.66	39%	0.40	6,200	To Infiltration	
2	0.52	0.34	65%	0.64	1,205	To Bio Ret.	
3							
4							
5							
6							
7							
8							
9							
10							
Subtotal (1-30)	4.80	2.00	42%	0.43	7,405	Subtotal 1	
Total	4.80	2.00	42%	0.43	7,405	Initial WQv	

Identify Runoff Reduction Techniques By Area					
Technique	Total Contributing Area	Contributing Impervious Area	Notes		
	(Acre)	(Acre)			
Conservation of Natural Areas	0.00	0.00	minimum 10,000 sf		
Riparian Buffers	0.00	0.00	maximum contributing length 75 feet to 150 feet		
Filter Strips	0.00	0.00			
Tree Planting	0.00	0.00	<i>Up to 100 sf directly connected impervious area may be subtracted per tree</i>		
Total	0.00	0.00			

Recalculate WQv after application of Area Reduction Techniques									
	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Runoff Coefficient Rv	WQv (ft ^³)				
"< <initial td="" wqv"<=""><td>4.80</td><td>2.00</td><td>42%</td><td>0.43</td><td>7,405</td></initial>	4.80	2.00	42%	0.43	7,405				
Subtract Area	0.00	0.00							
WQv adjusted after Area Reductions	4.80	2.00	42%	0.43	7,405				
Disconnection of Rooftops		0.00							
Adjusted WQv after Area Reduction and Rooftop Disconnect	4.80	2.00	42%	0.43	7,405				
WQv reduced by Area Reduction techniques					0				

0.17 af

0.17	af
0.00	af

	Runoff Reduction Volume and Treated volumes							
	Runoff Reduction Techiques/Standard SMPs		Total Contributing Area	Total Contributing Impervious Area	WQv Reduced (RRv)	WQv Treated		
			(acres)	(acres)	cf	cf		
	Conservation of Natural Areas	RR-1	0.00	0.00				
Area/Volume Reduction	Sheetflow to Riparian Buffers/Filter Strips	RR-2	0.00	0.00				
duct	Tree Planting/Tree Pit	RR-3	0.00	0.00				
Rec	Disconnection of Rooftop Runoff	RR-4		0.00				
ne	Vegetated Swale	RR-5	0.00	0.00	0			
olui	Rain Garden	RR-6	0.00	0.00	0			
°∕e	Stormwater Planter	RR-7	0.00	0.00	0			
Area	Rain Barrel/Cistern	RR-8	0.00	0.00	0			
4	Porous Pavement	RR-9	0.00	0.00	0			
	Green Roof (Intensive & Extensive)	RR-10	0.00	0.00	0			
	Infiltration Trench	I-1	0.00	0.00	0	0		
1Ps city	Infiltration Basin	I-2	4.28	1.66	6200	0		
l SN apa	Dry Well	I-3	0.00	0.00	0	0		
lard v Cã	Underground Infiltration System	I-4						
Standard SMPs w/RRv Capacity	Bioretention & Infiltration Bioretention	F-5	0.52	0.34	1205	0		
	Dry swale	0-1	0.00	0.00	0	0		
	Micropool Extended Detention (P-1)	P-1						
	Wet Pond (P-2)	P-2						
	Wet Extended Detention (P-3)	P-3						
	Multiple Pond system (P-4)	P-4						
S	Pocket Pond (p-5)	P-5						
M	Surface Sand filter (F-1)	F-1						
rd	Underground Sand filter (F-2)	F-2						
Standard SMPs	Perimeter Sand Filter (F-3)	F-3						
Sta	Organic Filter (F-4	F-4						
	Shallow Wetland (W-1)	W-1						
	Extended Detention Wetland (W-2	W-2						
	Pond/Wetland System (W-3)	W-3						
	Pocket Wetland (W-4) Wet Swale (O-2)	W-4 0-2						
			0.00	0.00	0			
	Totals by Area Reduction		0.00	0.00	0			
	Totals by Volume Reduction		0.00	0.00	0			
	Totals by Standard SMP w/RRV	\rightarrow	4.80	2.00	7405	0		
	Totals by Standard SMP		0.00	0.00		0		
Т	otals (Area + Volume + all SMPs)	\rightarrow	4.80	2.00	7,405	0		
	Impervious Cover V	okay						

Total Area √ okay		
-------------------	--	--

Minimum RRv

Enter the Soils Data for the site			
Soil Group	Acres	S	
А		55%	
В		40%	
С		30%	
D	4.80	20%	
Total Area	4.8		
Calculate the Mini	imum RRv		
S =	0.20		
Impervious =	2.00	acre	
Precipitation	1	in	
Rv	0.95		
Minimum RRv	1,379	ft3	
	0.03	af	

NOI QUESTIONS

#	NOI Question	Reported Value				
		cf	af			
28	Total Water Quality Volume (WQv) Required	7405	0.170			
30	Total RRV Provided74050.1					
31	Is RRv Provided ≥WQv Required? Yes					
32	Minimum RRv	1379	0.032			
32a	Is RRv Provided ≥ Minimum RRv Required?	Ye	s			
33a	Total WQv Treated	0	0.000			
34	Sum of Volume Reduced & Treated	7405	0.170			
34	Sum of Volume Reduced and Treated	7405	0.170			
35	Is Sum RRv Provided and WQv Provided ≥WQv Required? Yes					

	Apply Peak Flow Attenuation						
36	Channel Protection	Срv					
37	Overbank	Qp					
37	Extreme Flood Control	Qf					
	Are Quantity Control requirements met?						

NOI QUESTIONS

100.00%

Infiltrating Bioretention Worksheet

(For use on HSG A or B Soils without underdrains) $WQv \le VSM + VDL + (DP \times ARG)$ $VSM = ARG \times DSM \times nSM$ VDL (optional) = ARG $\times DDL \times nDL$

Design Point:									
	Enter Site Data For Drainage Area to be Treated by Practice								
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQvPrecipitation (ft 3)Description				
2	0.52	0.34	0.65	0.64	1205.16	1.00	To Bio Ret.		
Enter Impervious Reduced by Disco Rooftops			65%	0.64	1,205	1,205 <pre><<wqv adjusting="" after="" for<br="">Disconnected Rooftops</wqv></pre>			
Enter the portion routed to this pr		that is not re	duced for all p	oractices		ft ³			
	Infiltrating Bioretention Parameters								
Treatment Volur	ne	WQv	1,205	ft ³					
Enter depth of so		DSM	2.50	ft	2.5 - 4 ft				
Enter depth of d	-	DDL	0.50	ft	≥ 0.5 ft				
Enter ponding de surface	epth above	DP	0.5	ft	≤ 0.5				
Enter porosity of	f Soil Media	nSM	20.00		≥20%				
Enter porosity of	f Drainage	nDL	40.00		≥ 40%				
Required Biorete	ention Area	ARG	17	sf					
Bioretention Are	a Provided	-	1050	ft2					
Native Soil Infiltr	ration Rate		0.50	in/hr	Okay				
Are you using ur	nderdrains?		Yes						
Total Volume Provided		74,025	ft ³	Sum of storage Volume Provided in each laye					
	Determine Runoff Reduction								
Runoff Reductio	'n		1,205	ft ³		% of storage vo ichever is less	olume provided or		
Volume Treated			0	ft ³		e portion of the in the practice	WQv that is not		
Sizing √			ОК		Check to be sure Area provided \geq Af				

Infiltration Basin Worksheet

Design Point:							
Catchment	En Total Area	iter Site Data Impervious	For Drainage Percent	Area to b	e Treated WQv	-	
Number	(Acres)	Area (Acres)	Impervious %	Rv	(ft ³)	Precipitation (in)	Description
1	4.28	1.66	0.39	0.40	6200.04	1.00	To Infiltration
	Enter Impervious Area Reduced by Disconnection of 0.00 Rooftops			0.40	6,200 Disconnected Rooftops		
Enter the portio routed to this pr		that is not rec	luced for all pr	actices	0	ft ³	
		Pretreat	ment Techniq	ues to Pr	event Clo	gging	
Infiltration Rate	2		2.80	in/hour	Okay	000	
Pretreatment Sizing			50	% WQv	25% minimum; 50% if >2 in/hr 100% if >5in/hour		
Pretreatment Required Volume			3,100	ft ³	-		
Pretreatment Provided			3,400	ft ³			
Pretreatment T	echniques ut	ilized	Other	-	-		
			Size An Infi	Itration B	asin		
Design Volume	6,200	ft ³	WQv				
Basal Area Required	1,378	ft ²	Infiltration p through the j				te the entire WQv
Basal Area Provided	1,700	ft ²					
Design Depth	4.50	ft					
Volume Provided	7,650	<i>ft</i> ³ Storage Volume provided in infiltration basin area (not including pretreatment.				ea (not including	
Determine Runoff Reduction							
RRv	6,200	<i>ft</i> ³ 90% of the storage provided in the basin or WQv whichever is smaller					
Volume Treated	0	ft ³	ft ³ This is the portion of the WQv that is not reduced/infiltrated				d/infiltrated
Sizing √	ОК		The infiltration basin must provide storage equal to or greater than the WQv of the contributing area.				l to or greater than

ITEM 208.01030022BIORETENTION AND DRY SWALE SOILITEM 208.01040022LABORATORY TESTING FOR SOIL PHOSPHORUSCONCENTRATION

DESCRIPTION

This work shall consist of installing Bioretention and Dry Swale Soil in accordance with the contract documents and as directed by the Engineer.

The work shall also consist of having the Bioretention and Dry Swale Soil tested for total soil phosphorus concentration at a qualified laboratory. A qualified laboratory shall be defined as a laboratory that is certified by the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) to test soil for total soil phosphorous.

MATERIALS

The following sections of the standard specifications apply:

§703-07	Concrete Sand
§713-01	Topsoil, Type A (see exceptions below)

The soil for Bioretention areas and Dry Swales shall be a uniform mix, free of stones, stumps, roots or other objects larger than two inches (2") in diameter. The Bioretention and Dry Swale soil shall be visibly free of noxious weeds.

Bioretention and Dry Swale Soil shall be a well blended mixture of three (3) parts sand and one (1) part topsoil, by volume. The Bioretention and Dry Swale Soil shall have a pH range of 5.2 to 7.6, and an organic content of 3-7%.

Sand shall meet the requirements of §703-07 Concrete Sand.

Topsoil shall be in accordance with the requirements of §713-01 *Topsoil* for Topsoil Type A, except as follows:

- All topsoil shall be sampled and tested, regardless of the source.
- Sampling of topsoil, amended topsoil, and the Bioretention and Dry Swale Soil shall be done by the Contractor/Supplier. Sampling protocol shall be in accordance with §713-01 *Topsoil*.

Soil amendments to increase organic content shall be peat moss. Peat moss shall be commercially produced and shall be composed of the partly decomposed stems and leaves of any or several species of sphagnum moss. It shall be free from wood, decomposed colloidal residue, and other foreign matter. It shall have a pH range between 3.5 pH - 5.5 pH as determined in accordance with the Association of Official Agricultural Chemists' testing methods. It's water-absorbing ability shall be a minimum of 1100% by weight on an oven-dry basis.

Acceptance of Bioretention and Dry Swale soil will be based upon a material certification that the

ITEM 208.01030022BIORETENTION AND DRY SWALE SOILITEM 208.01040022LABORATORY TESTING FOR SOIL PHOSPHORUSCONCENTRATION

material conforms to the above requirements. The Contractor/Supplier shall provide to the Engineer copies of testing results of the sand gradation, topsoil gradation, organic content percentage of the Bioretention and Dry Swale Soil, and pH of the Bioretention and Dry Swale Soil. These tests are to be paid under the Bioretention and Dry Swale Soil item.

The Contractor shall provide to the Engineer copies of testing results for Soil Phosphorus Concentration. Samples to be submitted to the qualified laboratory shall be obtained in accordance with §713-01 *Topsoil*. Sampling shall be paid under the pay item for Bioretention and Dry Swale Soil. The results of the Soil Phosphorus analysis shall not be used as the basis for material acceptance.

Sampling frequency for total phosphorous shall be one composite sample for the first 100 to 500 cubic yards of soil, and an additional composite sample for each additional 500 cubic yards, or portion thereof. No samples are required for stockpiles of less than 100 cubic yards.

CONSTRUCTION DETAILS

Bioretention and Dry Swale Soil shall be installed at the locations and to the depth(s) as shown in the contract documents. Placement of Bioretention and Dry Swale Soil shall be done in lifts of 12 inches to 18 inches. The soil shall be loosely compacted, such as by tamping lightly with a dozer or backhoe bucket. No other materials or substances shall be mixed or dumped within the Bioretention area and Dry Swale that may be harmful to plant growth, or prove a hindrance to planting or maintenance operations.

METHOD OF MEASUREMENT

Bioretention and Dry Swale Soil

The work will be measured as the number of cubic yards of Bioretention and Dry Swale Soil installed, computed from payment lines shown in the contract documents.

Laboratory Testing for Soil Phosphorus Concentration

The work will be measured by the number of soil samples analyzed for Soil Phosphorus Concentration by a qualified laboratory.

BASIS OF PAYMENT

The unit price bid for a cubic yard of Bioretention and Dry Swale Soil shall include the cost of furnishing all labor, materials, and equipment necessary to satisfactorily complete the work, including costs for testing.

The unit price bid for Laboratory Testing for Soil Phosphorus Concentration, shall include the receipted costs of testing, including the cost of the laboratory test(s) and all labor, materials and equipment required to obtain and deliver soil sample(s) to the qualified laboratory plus 5% for profit

ITEM 208.01030022BIORETENTION AND DRY SWALE SOILITEM 208.01040022LABORATORY TESTING FOR SOIL PHOSPHORUSCONCENTRATION

and overhead.

Division of Water

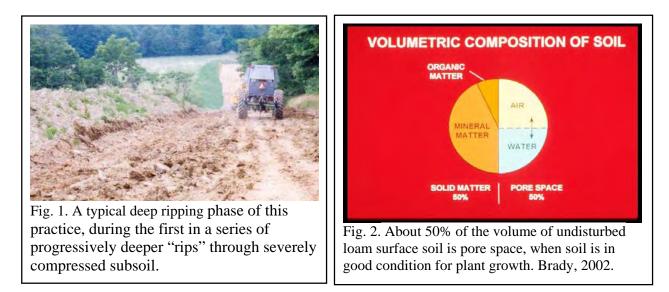
Deep-Ripping and Decompaction

April 2008

New York State Department of Environmental Conservation Document Prepared by:

John E. Lacey,

Land Resource Consultant and Environmental Compliance Monitor (Formerly with the Division of Agricultural Protection and Development Services, NYS Dept. of Agriculture & Markets)


Alternative Stormwater Management Deep-Ripping and Decompaction

Description

The two-phase practice of 1) "Deep Ripping;" and 2) "Decompaction" (deep subsoiling), of the soil material as a step in the cleanup and restoration/landscaping of a construction site, helps mitigate the physically induced impacts of soil compression; i.e.: soil compaction or the substantial increase in the bulk density of the soil material.

Deep Ripping and Decompaction are key factors which help in restoring soil pore space and permeability for water infiltration. Conversely, the physical actions of cut-and-fill work, land grading, the ongoing movement of construction equipment and the transport of building materials throughout a site alter the architecture and structure of the soil, resulting in: the mixing of layers (horizons) of soil materials, compression of those materials and diminished soil porosity which, if left unchecked, severely impairs the soil's water holding capacity and vertical drainage (rainfall infiltration), from the surface downward.

In a humid climate region, compaction damage on a site is virtually guaranteed over the duration of a project. Soil in very moist to wet condition when compacted, will have severely reduced permeability. Figure 1 displays the early stage of the deep-ripping phase (Note that all topsoil was stripped prior to construction access, and it remains stockpiled until the next phase – decompaction – is complete). A heavy-duty tractor is pulling a three-shank ripper on the first of several series of incrementally deepening passes through the construction access corridor's densely compressed subsoil material. Figure 2 illustrates the approximate volumetric composition of a loam surface soil when conditions are good for plant growth, with adequate natural pore space for fluctuating moisture conditions.

Recommended Application of Practice

The objective of Deep Ripping and Decompaction is to effectively fracture (vertically and laterallly) through the thickness of the physically compressed subsoil material (see Figure 3), restoring soil porosity and permeability and aiding infiltration to help reduce runoff. Together with topsoil stripping, the "two-phase" practice of Deep Ripping and Decompaction first became established as a "best management practice" through ongoing success on commercial farmlands affected by heavy utility construction right-of-way projects (transmission pipelines and large power lines).

Soil permeability, soil drainage and cropland productivity were restored. For broader

Fig. 3. Construction site with significant compaction of the deep basal till subsoil extends 24 inches below this exposed cutand-fill work surface.

construction application, the two-phase practice of Deep Ripping and Decompaction is best adapted to areas impacted with significant soil compaction, on contiguous open portions of large construction sites and inside long, open construction corridors used as temporary access over the duration of construction. Each mitigation area should have minimal above-and-below-ground obstructions for the easy avoidance and maneuvering of a large tractor and ripping/decompacting implements. Conversely, the complete two-phase practice is not recommended in congested or obstructed areas due to the limitations on tractor and implement movement.

Benefits

Aggressive "deep ripping" through the compressed thickness of exposed subsoil before the replacement/respreading of the topsoil layer, followed by "decompaction," i.e.: "sub-soiling," through the restored topsoil layer down into the subsoil, offers the following benefits:

- Increases the project (larger size) area's direct surface infiltration of rainfall by providing the open site's mitigated soil condition and lowers the demand on concentrated runoff control structures
- Enhances direct groundwater recharge through greater dispersion across and through a broader surface than afforded by some runoff-control structural measures
- Decreases runoff volume generated and provides hydrologic source control
- May be planned for application in feasible open locations either alone or in

conjunction with plans for structural practices (e.g., subsurface drain line or infiltration basin) serving the same or contiguous areas

• Promotes successful long-term revegetation by restoring soil permeability, drainage and water holding capacity for healthy (rather than restricted) root-system development of trees, shrubs and deep rooted ground cover, minimizing plant drowning during wet periods and burnout during dry periods.

Feasibility/Limitations

The effectiveness of Deep Ripping and Decompaction is governed mostly by site factors such as: the original (undisturbed) soil's hydrologic characteristics; the general slope; local weather/timing (soil moisture) for implementation; the space-related freedom of equipment/implement maneuverability (noted above in **Recommended Application of Practice**), and by the proper selection and operation of tractor and implements (explained below in **Design Guidance**). The more notable site-related factors include:

Soil

In the undisturbed condition, each identified soil type comprising a site is grouped into one of four categories of soil hydrology, Hydrologic Soil Group A, B, C or D, determined primarily by a range of characteristics including soil texture, drainage capability when thoroughly wet, and depth to water table. The natural rates of infiltration and transmission of soil-water through the undisturbed soil layers for Group A is "high" with a low runoff potential while soils in Group B are moderate in infiltration and the transmission of soil-water with a moderate runoff potential, depending somewhat on slope. Soils in Group C have slow rates of infiltration and transmission of soil-water and a moderately high runoff potential influenced by soil texture and slope; while

soils in Group D have exceptionally slow rates of infiltration and transmission of soilwater, and high runoff potential.

In Figure 4, the profile displays the undisturbed horizons of a soil in Hydrologic Soil Group C and the naturally slow rate of infiltration through the subsoil. The slow rate of infiltration begins immediately below the topsoil horizon (30 cm), due to the limited amount of macro pores, e.g.: natural subsoil fractures, worm holes and root channels. Infiltration after the construction-induced mixing and compression of such subsoil material is virtually absent; but can be restored back to this natural level with the two-phase practice of deep ripping and decompaction, followed by the permanent establishment of an appropriate, deep taproot

Fig. 4. Profile (in centimeters) displaying the infiltration test result of the natural undisturbed horizons of a soil in Hydrologic Soil Group C.

lawn/ground cover to help maintain the restored subsoil structure. Infiltration after constructioninduced mixing and compression of such subsoil material can be notably rehabilitated with the Deep Ripping and Decompaction practice, which prepares the site for the appropriate long-term lawn/ground cover mix including deep taproot plants such as clover, fescue or trefoil, etc. needed for all rehabilitated soils.

Generally, soils in Hydrologic Soil Groups A and B, which respectively may include deep, welldrained, sandy-gravelly materials or deep, moderately well-drained basal till materials, are among the easier ones to restore permeability and infiltration, by deep ripping and decompaction. Among the many different soils in Hydrologic Soil Group C are those unique glacial tills having a natural fragipan zone, beginning about 12 to 18 inches (30 - 45cm), below surface. Although soils in Hydrologic Soil Group C do require a somewhat more carefully applied level of the Deep Ripping and Decompaction practice, it can greatly benefit such affected areas by reducing the runoff and fostering infiltration to a level equal to that of pre-disturbance.

Soils in Hydrologic Soil Group D typically have a permanent high water table close to the surface, influenced by a clay or other highly impervious layer of material. In many locations with clay subsoil material, the bulk density is so naturally high that heavy trafficking has little or no added impact on infiltration; and structural runoff control practices rather than Deep Ripping and Decompaction should be considered.

The information about Hydrologic Soil Groups is merely a general guideline. Site-specific data such as limited depths of cut-and-fill grading with minimal removal or translocation of the inherent subsoil materials (as analyzed in the county soil survey) or, conversely, the excavation and translocation of deeper, unconsolidated substratum or consolidated bedrock materials (unlike the analyzed subsoil horizons' materials referred to in the county soil survey) should always be taken into account.

Sites made up with significant quantities of large rocks, or having a very shallow depth to bedrock, are not conducive to deep ripping and decompation (subsoiling); and other measures may be more practical.

Slope

The two-phase application of 1) deep ripping and 2) decompaction (deep subsoiling), is most practical on flat, gentle and moderate slopes. In some situations, such as but not limited to temporary construction access corridors, inclusion areas that are moderately steep along a project's otherwise gentle or moderate slope may also be deep ripped and decompacted. For limited instances of moderate steepness on other projects, however, the post-construction land use and the relative alignment of the potential ripping and decompaction work in relation to the lay of the slope should be reviewed for safety and practicality. In broad construction areas predominated by moderately steep or steep slopes, the practice is generally not used.

Local Weather/Timing/Soil Moisture

Effective fracturing of compressed subsoil material from the exposed work surface, laterally and vertically down through the affected zone is achieved only when the soil material is moderately dry to moderately moist. Neither one of the two-phases, deep ripping nor decompaction (deep

subsoiling), can be effectively conducted when the soil material (subsoil or replaced topsoil) is in either a "plastic" or "liquid" state of soil consistency. Pulling the respective implements legs through the soil when it is overly moist only results in the "slicing and smearing" of the material or added "squeezing and compression" instead of the necessary fracturing. Ample drying time is needed for a "rippable" soil condition not merely in the material close to the surface, but throughout the material located down to the bottom of the physically compressed zone of the subsoil.

The "poor man's Atterberg field test" for soil plasticity is a simple "hand-roll" method used for quick, on-site determination of whether or not the moisture level of the affected soil material is low enough for: effective deep ripping of subsoil; respreading of topsoil in a friable state; and final decompaction (deep subsoiling). Using a sample of soil material obtained from the planned bottom depth of ripping, e.g.: 20 - 24 inches below exposed subsoil surface, the sample is hand rolled between the palms down to a 1/8-inch diameter thread. (Use the same test for stored topsoil material before respreading on the site.) If the respective soil sample crumbles apart in segments no greater than 3/8 of an inch long, by the time it is rolled down to 1/8 inch diameter, it is low enough in moisture for deep ripping (or replacement), decompaction. topsoil and Conversely, as shown in Figure 5, if the rolled sample stretches out in increments greater than

Fig. 5. Augered from a depth of 19 inches below the surface of the replaced topsoil, this subsoil sample was hand rolled to a 1/8-inch diameter. The test shows the soil at this site stretches out too far without crumbling; it indicates the material is in a plastic state of consistence, too wet for final decompaction (deep subsoiling) at this time.

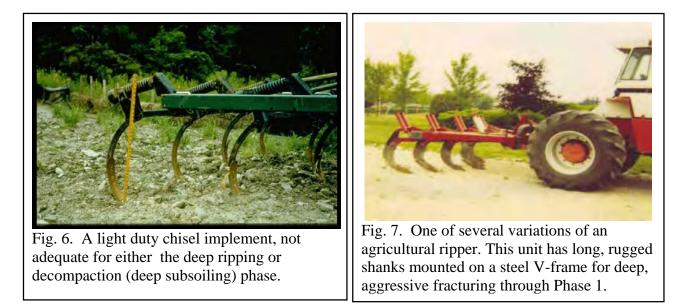
3/8 of an inch long before crumbling, it is in a "plastic" state of soil consistency and is too wet for subsoil ripping (as well as topsoil replacement) and final decompaction.

Design Guidance

Beyond the above-noted site factors, a vital requirement for the effective Deep Ripping and Decompaction (deep subsoiling), is implementing the practice in its distinct, two-phase process:

1) Deep rip the affected thickness of exposed subsoil material (see Figure 10 and 11), aggressively fracturing it before the protected topsoil is reapplied on the site (see Figure 12); and

2) Decompact (deep subsoil), simultaneously through the restored topsoil layer and the upper half of the affected subsoil (Figure 13). The second phase, "decompaction," mitigates the partial recompaction which occurs during the heavy process of topsoil spreading/grading. Prior to deep ripping and decompacting the site, all construction activity, including construction equipment and material storage, site cleanup and trafficking (Figure 14), should be finished; and the site closed off to further disturbance. Likewise, once the practice is underway and the area's soil permeability and


rainfall infiltration are being restored, a policy limiting all further traffic to permanent travel lanes is maintained.

The other critical elements, outlined below, are: using the proper implements (deep, heavy-duty rippers and subsoilers), and ample pulling-power equipment (tractors); and conducting the practice at the appropriate speed, depth and pattern(s) of movement.

Note that an appropriate plan for the separate practice of establishing a healthy perennial ground cover, with deep rooting to help maintain the restored soil structure, should be developed in advance. This may require the assistance of an agronomist or landscape horticulturist.

Implements

Avoid the use of all undersize implements. The small-to-medium, light-duty tool will, at best, only "scarify" the uppermost surface portion of the mass of compacted subsoil material. The term "chisel plow" is commonly but incorrectly applied to a broad range of implements. While a few may be adapted for the moderate subsoiling of non-impacted soils, the majority are less durable and used for only lighter land-fitting (see Figure 6).

Use a "heavy duty" agricultural-grade, deep ripper (see Figures 7,9,10 and 11) for the first phase: the lateral and vertical fracturing of the mass of exposed and compressed subsoil, down and through, to the bottom of impact, prior to the replacement of the topsoil layer. (Any oversize rocks which are uplifted to the subsoil surface during the deep ripping phase are picked and removed.) Like the heavy-duty class of implement for the first phase, the decompaction (deep subsoiling) of Phase 2 is conducted with the heavy-duty version of the deep subsoiler. More preferable is the angled-leg variety of deep subsoiler (shown in Figures 8 and 13). It minimizes the inversion of the subsoil and topsoil layers while laterally and vertically fracturing the upper half of the previously ripped subsoil layer and all of the topsoil layer by delivering a momentary, wave-like "lifting and shattering" action up through the soil layers as it is pulled.

Pulling-Power of Equipment

Use the following rule of thumb for tractor horsepower (hp) whenever deep ripping and decompacting a significantly impacted site: For both types of implement, have at least 40 hp of tractor pull available for each mounted shank/ leg.

Using the examples of a 3-shank and a 5-shank implement, the respective tractors should have 120 and 200 hp available for fracturing down to the final depth of 20-to-24 inches per phase. Final depth for the deep ripping in Phase 1 is achieved incrementally by a progressive series of passes (see Depth and Patterns of Movement, below); while for Phase 2, the full operating depth of the deep subsoiler is applied from the beginning.

The operating speed for pulling both types of implement should not exceed 2 to 3 mph. At this slow and managed rate of operating speed, maximum functional performance is sustained by the tractor and the implement performing the Referring to Figure 8, the soil fracturing. implement is the 6-leg version of the deep angled-leg subsoiler. Its two outside legs are "chained up" so that only four legs will be engaged (at the maximum depth), requiring no less than 160 hp, (rather than 240 hp) of pull. The 4-wheel drive, articulated-frame tractor in Figure 8 is 174 hp. It will be decompacting this unobstructed, former construction access area simultaneously through 11 inches of replaced topsoil and the upper 12 inches of the previously deep-ripped subsoil. In constricted areas of Phase 1) Deep Ripping, a medium-size tractor with adequate hp, such as the one in Figure 9 pulling a 3-shank deep ripper, may be more maneuverable.

Some industrial-grade variations of ripping implements are attached to power graders and bulldozers. Although highly durable, they are generally not recommended. Typically, the shanks or "teeth" of these rippers are too short and stout; and they are mounted too far apart to achieve the well-distributed type of lateral and vertical fracturing of the soil materials necessary to restore soil permeability and infiltration. In addition, the power graders and bulldozers, as pullers, are far less maneuverable for turns and patterns than the tractor.

Fig. 8. A deep, angled-leg subsoiler, ideal for Phase 2 decompaction of after the topsoil layer is graded on top of the ripped subsoil.

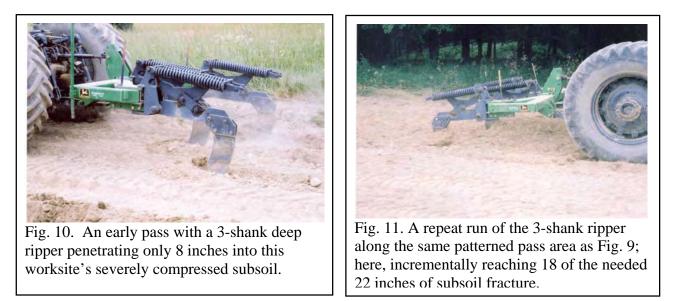


Fig. 9. This medium tractor is pulling a 3shank deep ripper. The severely compacted construction access corridor is narrow, and the 120 hp tractor is more maneuverable for Phase 1 deep ripping (subsoil fracturing), here.

Depth and Patterns of Movement

As previously noted both Phase 1 Deep Ripping through significantly compressed, exposed subsoil and Phase 2 Decompaction (deep subsoiling) through the replaced topsoil and upper subsoil need to be performed at maximum capable depth of each implement. With an implement's guide wheels attached, some have a "normal" maximum operating depth of 18 inches, while others may go deeper. In many situations, however, the tractor/implement operator must first remove the guide wheels and other non essential elements from the implement. This adapts the ripper or the deep subsoiler for skillful pulling with its frame only a few inches above surface, while the shanks or legs, fracture the soil material 20-to-24 inches deep.

There may be construction sites where the depth of the exposed subsoil's compression is moderate, e.g.: 12 inches, rather than deep. This can be verified by using a ³/₄ inch cone penetrometer and a shovel to test the subsoil for its level of compaction, incrementally, every three inches of increasing depth. Once the full thickness of the subsoil's compacted zone is finally "pieced" and there is a significant drop in the psi measurements of the soil penetrometer, the depth/thickness of compaction is determined. This is repeated at several representative locations of the construction site. If the thickness of the site's subsoil compaction is verified as, for example, ten inches, then the Phase 1 Deep Ripping can be correspondingly reduced to the implement's minimum operable depth of 12 inches. However, the Phase 2 simultaneous Decompation (subsoiling) of an 11 inch thick layer of replaced topsoil and the upper subsoil should run at the subsoiling implements full operating depth.

Typically, three separate series (patterns) are used for both the Phase 1 Deep Ripping and the Phase 2 Decompaction on significantly compacted sites. For Phase 1, each series begins with a moderate depth of rip and, by repeat-pass, continues until full depth is reached. Phase 2 applies the full depth of Decompation (subsoiling), from the beginning.

Every separate series (pattern) consists of parallel, forward-and-return runs, with each progressive

pass of the implement's legs or shanks evenly staggered between those from the previous pass. This compensates for the shank or leg-spacing on the implement, e.g., with 24-to-30 inches between each shank or leg. The staggered return pass ensures lateral and vertical fracturing actuated every 12 to 15 inches across the densely compressed soil mass.

Large, Unobstructed Areas

For larger easy areas, use the standard patterns of movement:

- The first series (pattern) of passes is applied lengthwise, parallel with the longest spread of the site; gradually progressing across the site's width, with each successive pass.
- The second series runs obliquely, crossing the first series at an angle of about 45 degrees.
- The third series runs at right angle (or 90 degrees), to the first series to complete the fracturing and shattering on severely compacted sites, and avoid leaving large unbroken blocks of compressed soil material. (In certain instances, the third series may be optional, depending on how thoroughly the first two series loosen the material and eliminate large chunks/blocks of material as verified by tests with a ³/₄-inch cone penetrometer.)

Fig. 12. Moderately dry topsoil is being replaced on the affected site now that Phase 1 deep ripping of the compressed subsoil is complete.

Fig. 13. The same deep, angled-leg subsoiler shown in Fig. 7 is engaged at maximum depth for Phase 2, decompaction (deep soiling), of the replaced topsoil and the upper subsoil materials.

Corridors

In long corridors of limited width and less maneuverability than larger sites, e.g.: along compacted areas used as temporary construction access, a modified series of pattern passes are used.

• First, apply the same initial lengthwise, parallel series of passes described above.

• A second series of passes makes a broad "S" shaped pattern of rips, continually and gradually alternating the "S" curves between opposite edges inside the compacted corridor.

• The third and final series again uses the broad, alternating S pattern, but it is "flip-flopped" to continually cross the previous S pattern along the corridor's centerline. This final series of the S pattern curves back along the edge areas skipped by the second series.

Maintenance and Cost

Once the two-phase practice of Deep Ripping and Decompation is completed, two items are essential for maintaining a site's soil porosity and permeability for infiltration. They are: planting and maintaining the appropriate ground cover with deep roots to maintain the soil structure (see Figure 15); and keeping the site free of traffic or other weight loads.

Note that site-specific choice of an appropriate vegetative ground-cover seed mix, including the proper seeding ratio of one or more perennial species with a deep taproot system and the proper amount of lime and soil nutrients (fertilizer mix) adapted to the soil-needs, are basic to the final practice of landscaping, i.e: surface tillage, seeding/planting/fertilizing and culti-packing or mulching is applied. The "maintenance" of an effectively deep-ripped and decompacted area is generally limited to the successful perennial (long-term) landscape ground cover; as long as no weight-bearing force of soil compaction is applied.

Fig. 14. The severely compacted soil of a temporary construction yard used daily by heavy equipment for four months; shown before deep ripping, topsoil replacement, and decompaction.

Fig. 15. The same site as Fig. 14 after deep ripping of the exposed subsoil, topsoil replacement, decompaction through the topsoil and upper subsoil and final surface tillage and revegetation to maintain soil permeability and infiltration.

The Deep Ripping and Decompaction practice is, by necessity, more extensive than periodic subsoiling of farmland. The cost of deep ripping and decompacting (deep subsoiling), will vary according to the depth and severity of soil-material compression and the relative amount of tractor and implement time that is required. In some instances, depending on open maneuverability, two-to-three acres of compacted project area may be deep-ripped in one day. In other situations of more severe compaction and - or less maneuverability, as little as one acre may be fully ripped in a day. Generally, if the Phase 1) Deep Ripping is fully effective, the Phase 2) Decompaction should be completed in 2/3 to 3/4 of the time required for Phase 1.

Using the example of two acres of Phase 1) Deep Ripping in one day, at \$1800 per day, the net cost is \$900 per acre. If the Phase 2) Decompacting or deep subsoiling takes 3/4 the time as Phase 1, it costs \$675 per acre for a combined total of \$1575 per acre to complete the practice (these figures do not include the cost of the separate practice of topsoil stripping and replacement). Due to the many variables, it must be recognized that cost will be determined by the specific conditions or constraints of the site and the availability of proper equipment.

Resources

Publications:

- American Society of Agricultural Engineers. 1971. Compaction of Agricultural Soils. ASAE.
- Brady, N.C., and R.R. Weil. 2002. The Nature and Properties of Soils. 13th ed. Pearson Education, Inc.
- Baver, L.D. 1948. Soil Physics. John Wiley & Sons.
- Carpachi, N. 1987 (1995 fifth printing). *Excavation and Grading Handbook, Revised.* 2nd ed. Craftsman Book Company
- Ellis, B. (Editor). 1997. Safe & Easy Lawn Care: The Complete Guide to Organic Low Maintenance Lawn. Houghton Mifflin.
- Harpstead, M.I., T.J. Sauer, and W.F. Bennett. 2001. *Soil Science Simplified.* 4th ed. Iowa State University Press.
- Magdoff, F., and H. van Es. 2000. *Building Soils for Better Crops.* 2nd ed. Sustainable Agricultural Networks
- McCarthy, D.F. 1993. *Essentials of Soil Mechanics and Foundations, Basic Geotechnics* 4th ed. Regents/Prentice Hall.
- Plaster, E.J. 1992. *Soil Science & Management*. 3rd ed. Delmar Publishers.
- Union Gas Limited, Ontario, Canada. 1984. *Rehabilitation of Agricultural Lands, Dawn-Kerwood Loop Pipeline; Technical Report*. Ecological Services for Planning, Ltd.; Robinson, Merritt & Devries, Ltd. and Smith, Hoffman Associates, Ltd.
- US Department of Agriculture in cooperation with Cornell University Agricultural Experiment Station. Various years. *Soil Survey of <u>(various names)</u> County, New York.* USDA.

Internet Access:

• Examples of implements:

- <u>V-Rippers.</u> Access by internet search of *John Deere Ag -New Equipment for 915* (larger-frame model) *V-Rippe;* and, *for 913* (smaller-frame model) *V-Ripper.* <u>Deep, angled-leg subsoiler.</u> Access by internet search of: *Bigham Brothers Shear Bolt Paratill-Subsoiler.* <u>http://salesmanual.deere.com/sales/salesmanual/en_NA/primary_tillage/2008/feature/rippers/915v_pattern_frame.html?sbu=a_g&link=prodcat_Last visited March 08.</u>
- Soils data of USDA Natural Resources Conservation Service. NRCS Web Soil Survey. <u>http://websoilsurvey.nrcs.usda.gov/app/</u> and USDA-NRCS Official Soil Series Descriptions; View by Name. <u>http://ortho.ftw.nrcs.usda.gov/cgi-bin/osd/osdname.cgi</u>. Last visited Jan. 08.
- Soil penetrometer information. Access by internet searches of: *Diagnosing Soil Compaction using a Penetrometer (soil compaction tester), PSU Extension;* as well as *Dickey-john Soil Compaction Tester*. http://www.dickey-johnproducts.com/pdf/SoilCompactionTest.pdf and http://cropsoil.psu.edu/Extension/Facts/uc178pdf Last visited Sept. 07

Appendix F NYS DEC SPDES General Permit

Department of Environmental Conservation

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SPDES GENERAL PERMIT FOR STORMWATER DISCHARGES

From

CONSTRUCTION ACTIVITY

Permit No. GP- 0-20-001

Issued Pursuant to Article 17, Titles 7, 8 and Article 70

of the Environmental Conservation Law

Effective Date: January 29, 2020

Expiration Date: January 28, 2025

John J. Ferguson

Chief Permit Administrator

Authorized Signature

1-23-20

Date

Address: NYS DEC Division of Environmental Permits 625 Broadway, 4th Floor Albany, N.Y. 12233-1750

PREFACE

Pursuant to Section 402 of the Clean Water Act ("CWA"), stormwater *discharges* from certain *construction activities* are unlawful unless they are authorized by a *National Pollutant Discharge Elimination System ("NPDES")* permit or by a state permit program. New York administers the approved State Pollutant Discharge Elimination System (SPDES) program with permits issued in accordance with the New York State Environmental Conservation Law (ECL) Article 17, Titles 7, 8 and Article 70.

An owner or operator of a construction activity that is eligible for coverage under this permit must obtain coverage prior to the *commencement of construction activity*. Activities that fit the definition of "*construction activity*", as defined under 40 CFR 122.26(b)(14)(x), (15)(i), and (15)(ii), constitute construction of a *point source* and therefore, pursuant to ECL section 17-0505 and 17-0701, the *owner or operator* must have coverage under a SPDES permit prior to *commencing construction activity*. The *owner or operator* cannot wait until there is an actual *discharge* from the *construction site* to obtain permit coverage.

*Note: The italicized words/phrases within this permit are defined in Appendix A.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SPDES GENERAL PERMIT FOR STORMWATER DISCHARGES FROM CONSTRUCTION ACTIVITIES

Table of Contents

PERMIT COVERAGE AND LIMITATIONS	1
Permit Application	1
Effluent Limitations Applicable to Discharges from Construction Activities	1
Post-construction Stormwater Management Practice Requirements	
Maintaining Water Quality	
Eligibility Under This General Permit	9
Activities Which Are Ineligible for Coverage Under This General Permit	9
PERMIT COVERAGE	12
How to Obtain Coverage	12
Notice of Intent (NOI) Submittal	13
Permit Authorization	
General Requirements For Owners or Operators With Permit Coverage	15
Permit Coverage for Discharges Authorized Under GP-0-15-002	17
Change of Owner or Operator	
General SWPPP Requirements	18
Required SWPPP Contents	
Contractor Maintenance Inspection Requirements	
Termination of Permit Coverage	29
•	
•	
, _,	33
Other Information	
Property Rights	
Severability	35
	Permit Application

K.	Requirement to Obtain Coverage Under an Alternative Permit	35
L.	Proper Operation and Maintenance	36
М.	Inspection and Entry	36
N.	Permit Actions	37
О.	Definitions	37
Ρ.	Re-Opener Clause	37
Q.	Penalties for Falsification of Forms and Reports	37
R.	Other Permits	38
APPEN	DIX A – Acronyms and Definitions	39
Acror	nyms	39
Defin	itions	40
APPEN	DIX B – Required SWPPP Components by Project Type	48
Table	e 1	48
Table	9 2	50
APPEN	DIX C – Watersheds Requiring Enhanced Phosphorus Removal	52
APPEN	DIX D – Watersheds with Lower Disturbance Threshold	58
APPEN	DIX E – 303(d) Segments Impaired by Construction Related Pollutant(s)	59
APPEN	DIX F – List of NYS DEC Regional Offices	65

Part 1. PERMIT COVERAGE AND LIMITATIONS

A. Permit Application

This permit authorizes stormwater *discharges* to *surface waters of the State* from the following *construction activities* identified within 40 CFR Parts 122.26(b)(14)(x), 122.26(b)(15)(i) and 122.26(b)(15)(ii), provided all of the eligibility provisions of this permit are met:

- 1. Construction activities involving soil disturbances of one (1) or more acres; including disturbances of less than one acre that are part of a *larger common plan of development or sale* that will ultimately disturb one or more acres of land; excluding *routine maintenance activity* that is performed to maintain the original line and grade, hydraulic capacity or original purpose of a facility;
- 2. Construction activities involving soil disturbances of less than one (1) acre where the Department has determined that a *SPDES* permit is required for stormwater *discharges* based on the potential for contribution to a violation of a *water quality standard* or for significant contribution of *pollutants* to *surface waters of the State.*
- Construction activities located in the watershed(s) identified in Appendix D that involve soil disturbances between five thousand (5,000) square feet and one (1) acre of land.

B. Effluent Limitations Applicable to Discharges from Construction Activities

Discharges authorized by this permit must achieve, at a minimum, the effluent limitations in Part I.B.1. (a) – (f) of this permit. These limitations represent the degree of effluent reduction attainable by the application of best practicable technology currently available.

 Erosion and Sediment Control Requirements - The owner or operator must select, design, install, implement and maintain control measures to minimize the discharge of pollutants and prevent a violation of the water quality standards. The selection, design, installation, implementation, and maintenance of these control measures must meet the non-numeric effluent limitations in Part I.B.1.(a) – (f) of this permit and be in accordance with the New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016, using sound engineering judgment. Where control measures are not designed in conformance with the design criteria included in the technical standard, the owner or operator must include in the Stormwater Pollution Prevention Plan ("SWPPP") the reason(s) for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is *equivalent* to the technical standard.

- a. **Erosion and Sediment Controls.** Design, install and maintain effective erosion and sediment controls to *minimize* the *discharge* of *pollutants* and prevent a violation of the *water quality standards*. At a minimum, such controls must be designed, installed and maintained to:
 - (i) *Minimize* soil erosion through application of runoff control and soil stabilization control measure to *minimize pollutant discharges*;
 - (ii) Control stormwater *discharges*, including both peak flowrates and total stormwater volume, to *minimize* channel and *streambank* erosion and scour in the immediate vicinity of the *discharge* points;
 - (iii) *Minimize* the amount of soil exposed during *construction activity*;
 - (iv) *Minimize* the disturbance of *steep slopes*;
 - (v) *Minimize* sediment *discharges* from the site;
 - (vi) Provide and maintain *natural buffers* around surface waters, direct stormwater to vegetated areas and maximize stormwater infiltration to reduce *pollutant discharges*, unless *infeasible*;
 - (vii) Minimize soil compaction. Minimizing soil compaction is not required where the intended function of a specific area of the site dictates that it be compacted;
 - (viii) Unless *infeasible*, preserve a sufficient amount of topsoil to complete soil restoration and establish a uniform, dense vegetative cover; and
 - (ix) *Minimize* dust. On areas of exposed soil, *minimize* dust through the appropriate application of water or other dust suppression techniques to control the generation of pollutants that could be discharged from the site.
- b. Soil Stabilization. In areas where soil disturbance activity has temporarily or permanently ceased, the application of soil stabilization measures must be initiated by the end of the next business day and completed within fourteen (14) days from the date the current soil disturbance activity ceased. For construction sites that *directly discharge* to one of the 303(d) segments

listed in Appendix E or is located in one of the watersheds listed in Appendix C, the application of soil stabilization measures must be initiated by the end of the next business day and completed within seven (7) days from the date the current soil disturbance activity ceased. See Appendix A for definition of *Temporarily Ceased*.

- c. **Dewatering**. *Discharges* from *dewatering* activities, including *discharges* from *dewatering* of trenches and excavations, must be managed by appropriate control measures.
- d. **Pollution Prevention Measures**. Design, install, implement, and maintain effective pollution prevention measures to *minimize* the *discharge* of *pollutants* and prevent a violation of the *water quality standards*. At a minimum, such measures must be designed, installed, implemented and maintained to:
 - (i) Minimize the discharge of pollutants from equipment and vehicle washing, wheel wash water, and other wash waters. This applies to washing operations that use clean water only. Soaps, detergents and solvents cannot be used;
 - (ii) Minimize the exposure of building materials, building products, construction wastes, trash, landscape materials, fertilizers, pesticides, herbicides, detergents, sanitary waste, hazardous and toxic waste, and other materials present on the site to precipitation and to stormwater. Minimization of exposure is not required in cases where the exposure to precipitation and to stormwater will not result in a *discharge* of *pollutants*, or where exposure of a specific material or product poses little risk of stormwater contamination (such as final products and materials intended for outdoor use); and
 - (iii) Prevent the *discharge* of *pollutants* from spills and leaks and implement chemical spill and leak prevention and response procedures.
- e. Prohibited Discharges. The following discharges are prohibited:
 - (i) Wastewater from washout of concrete;
 - (ii) Wastewater from washout and cleanout of stucco, paint, form release oils, curing compounds and other construction materials;

- (iii) Fuels, oils, or other *pollutants* used in vehicle and equipment operation and maintenance;
- (iv) Soaps or solvents used in vehicle and equipment washing; and
- (v) Toxic or hazardous substances from a spill or other release.
- f. Surface Outlets. When discharging from basins and impoundments, the outlets shall be designed, constructed and maintained in such a manner that sediment does not leave the basin or impoundment and that erosion at or below the outlet does not occur.

C. Post-construction Stormwater Management Practice Requirements

- The owner or operator of a construction activity that requires post-construction stormwater management practices pursuant to Part III.C. of this permit must select, design, install, and maintain the practices to meet the *performance criteria* in the New York State Stormwater Management Design Manual ("Design Manual"), dated January 2015, using sound engineering judgment. Where post-construction stormwater management practices ("SMPs") are not designed in conformance with the *performance criteria* in the Design Manual, the owner or operator must include in the SWPPP the reason(s) for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is *equivalent* to the technical standard.
- 2. The owner or operator of a construction activity that requires post-construction stormwater management practices pursuant to Part III.C. of this permit must design the practices to meet the applicable *sizing criteria* in Part I.C.2.a., b., c. or d. of this permit.

a. Sizing Criteria for New Development

- (i) Runoff Reduction Volume ("RRv"): Reduce the total Water Quality Volume ("WQv") by application of RR techniques and standard SMPs with RRv capacity. The total WQv shall be calculated in accordance with the criteria in Section 4.2 of the Design Manual.
- (ii) Minimum RRv and Treatment of Remaining Total WQv: Construction activities that cannot meet the criteria in Part I.C.2.a.(i) of this permit due to site limitations shall direct runoff from all newly constructed impervious areas to a RR technique or standard SMP with RRv capacity unless infeasible. The specific site limitations that prevent the reduction of 100% of the WQv shall be documented in the SWPPP.

For each impervious area that is not directed to a RR technique or standard SMP with RRv capacity, the SWPPP must include documentation which demonstrates that all options were considered and for each option explains why it is considered infeasible.

In no case shall the runoff reduction achieved from the newly constructed impervious areas be less than the Minimum RRv as calculated using the criteria in Section 4.3 of the Design Manual. The remaining portion of the total WQv that cannot be reduced shall be treated by application of standard SMPs.

- (iii) Channel Protection Volume ("Cpv"): Provide 24 hour extended detention of the post-developed 1-year, 24-hour storm event; remaining after runoff reduction. The Cpv requirement does not apply when:
 - (1) Reduction of the entire Cpv is achieved by application of runoff reduction techniques or infiltration systems, or
 - (2) The site discharges directly to tidal waters, or fifth order or larger streams.
- (iv) Overbank Flood Control Criteria ("Qp"): Requires storage to attenuate the post-development 10-year, 24-hour peak discharge rate (Qp) to predevelopment rates. The Qp requirement does not apply when:
 - (1) the site discharges directly to tidal waters or fifth order or larger streams, or
 - (2) A downstream analysis reveals that *overbank* control is not required.
- (v) Extreme Flood Control Criteria ("Qf"): Requires storage to attenuate the post-development 100-year, 24-hour peak discharge rate (Qf) to predevelopment rates. The Qf requirement does not apply when:
 - (1) the site discharges directly to tidal waters or fifth order or larger streams, or
 - (2) A downstream analysis reveals that *overbank* control is not required.

b. *Sizing Criteria* for *New Development* in Enhanced Phosphorus Removal Watershed

Runoff Reduction Volume (RRv): Reduce the total Water Quality
 Volume (WQv) by application of RR techniques and standard SMPs
 with RRv capacity. The total WQv is the runoff volume from the 1-year,
 24 hour design storm over the post-developed watershed and shall be

calculated in accordance with the criteria in Section 10.3 of the Design Manual.

(ii) Minimum RRv and Treatment of Remaining Total WQv: Construction activities that cannot meet the criteria in Part I.C.2.b.(i) of this permit due to site limitations shall direct runoff from all newly constructed impervious areas to a RR technique or standard SMP with RRv capacity unless infeasible. The specific site limitations that prevent the reduction of 100% of the WQv shall be documented in the SWPPP. For each impervious area that is not directed to a RR technique or standard SMP with RRv capacity, the SWPPP must include documentation which demonstrates that all options were considered and for each option explains why it is considered infeasible.

In no case shall the runoff reduction achieved from the newly constructed *impervious areas* be less than the Minimum RRv as calculated using the criteria in Section 10.3 of the Design Manual. The remaining portion of the total WQv that cannot be reduced shall be treated by application of standard SMPs.

- (iii) Channel Protection Volume (Cpv): Provide 24 hour extended detention of the post-developed 1-year, 24-hour storm event; remaining after runoff reduction. The Cpv requirement does not apply when:
 - (1) Reduction of the entire Cpv is achieved by application of runoff reduction techniques or infiltration systems, or
 - (2) The site *discharge*s directly to tidal waters, or fifth order or larger streams.
- (iv) Overbank Flood Control Criteria (Qp): Requires storage to attenuate the post-development 10-year, 24-hour peak discharge rate (Qp) to predevelopment rates. The Qp requirement does not apply when:
 - (1) the site *discharges* directly to tidal waters or fifth order or larger streams, or
 - (2) A downstream analysis reveals that *overbank* control is not required.
- (v) Extreme Flood Control Criteria (Qf): Requires storage to attenuate the post-development 100-year, 24-hour peak *discharge* rate (Qf) to predevelopment rates. The Qf requirement does not apply when:
 - (1) the site *discharges* directly to tidal waters or fifth order or larger streams, or
 - (2) A downstream analysis reveals that *overbank* control is not required.

c. Sizing Criteria for Redevelopment Activity

- (i) Water Quality Volume (WQv): The WQv treatment objective for redevelopment activity shall be addressed by one of the following options. Redevelopment activities located in an Enhanced Phosphorus Removal Watershed (see Part III.B.3. and Appendix C of this permit) shall calculate the WQv in accordance with Section 10.3 of the Design Manual. All other redevelopment activities shall calculate the WQv in accordance with Section 4.2 of the Design Manual.
 - (1) Reduce the existing *impervious cover* by a minimum of 25% of the total disturbed, *impervious area*. The Soil Restoration criteria in Section 5.1.6 of the Design Manual must be applied to all newly created pervious areas, or
 - (2) Capture and treat a minimum of 25% of the WQv from the disturbed, impervious area by the application of standard SMPs; or reduce 25% of the WQv from the disturbed, impervious area by the application of RR techniques or standard SMPs with RRv capacity., or
 - (3) Capture and treat a minimum of 75% of the WQv from the disturbed, *impervious area* as well as any additional runoff from tributary areas by application of the alternative practices discussed in Sections 9.3 and 9.4 of the Design Manual., or
 - (4) Application of a combination of 1, 2 and 3 above that provide a weighted average of at least two of the above methods. Application of this method shall be in accordance with the criteria in Section 9.2.1(B) (IV) of the Design Manual.

If there is an existing post-construction stormwater management practice located on the site that captures and treats runoff from the *impervious area* that is being disturbed, the WQv treatment option selected must, at a minimum, provide treatment equal to the treatment that was being provided by the existing practice(s) if that treatment is greater than the treatment required by options 1 - 4 above.

- (ii) Channel Protection Volume (Cpv): Not required if there are no changes to hydrology that increase the *discharge* rate from the project site.
- (iii) Overbank Flood Control Criteria (Qp): Not required if there are no changes to hydrology that increase the *discharge* rate from the project site.
- (iv) Extreme Flood Control Criteria (Qf): Not required if there are no changes to hydrology that increase the *discharge* rate from the project site

d. Sizing Criteria for Combination of Redevelopment Activity and New Development

Construction projects that include both New Development and Redevelopment Activity shall provide post-construction stormwater management controls that meet the sizing criteria calculated as an aggregate of the Sizing Criteria in Part I.C.2.a. or b. of this permit for the New Development portion of the project and Part I.C.2.c of this permit for Redevelopment Activity portion of the project.

D. Maintaining Water Quality

The Department expects that compliance with the conditions of this permit will control *discharges* necessary to meet applicable *water quality standards*. It shall be a violation of the *ECL* for any discharge to either cause or contribute to a violation of *water quality standards* as contained in Parts 700 through 705 of Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York, such as:

- 1. There shall be no increase in turbidity that will cause a substantial visible contrast to natural conditions;
- 2. There shall be no increase in suspended, colloidal or settleable solids that will cause deposition or impair the waters for their best usages; and
- 3. There shall be no residue from oil and floating substances, nor visible oil film, nor globules of grease.

If there is evidence indicating that the stormwater *discharges* authorized by this permit are causing, have the reasonable potential to cause, or are contributing to a violation of the *water quality standards*; the *owner or operator* must take appropriate corrective action in accordance with Part IV.C.5. of this general permit and document in accordance with Part IV.C.4. of this general permit. To address the *water quality standard* violation the *owner or operator* may need to provide additional information, include and implement appropriate controls in the SWPPP to correct the problem, or obtain an individual SPDES permit.

If there is evidence indicating that despite compliance with the terms and conditions of this general permit it is demonstrated that the stormwater *discharges* authorized by this permit are causing or contributing to a violation of *water quality standards*, or if the Department determines that a modification of the permit is necessary to prevent a violation of *water quality standards*, the authorized *discharges* will no longer be eligible for coverage under this permit. The Department may require the *owner or operator* to obtain an individual SPDES permit to continue discharging.

E. Eligibility Under This General Permit

- 1. This permit may authorize all *discharges* of stormwater from *construction activity* to *surface waters of the State* and *groundwaters* except for ineligible *discharges* identified under subparagraph F. of this Part.
- 2. Except for non-stormwater *discharges* explicitly listed in the next paragraph, this permit only authorizes stormwater *discharges*; including stormwater runoff, snowmelt runoff, and surface runoff and drainage, from *construction activities*.
- 3. Notwithstanding paragraphs E.1 and E.2 above, the following non-stormwater discharges are authorized by this permit: those listed in 6 NYCRR 750-1.2(a)(29)(vi), with the following exception: "Discharges from firefighting activities are authorized only when the firefighting activities are emergencies/unplanned"; waters to which other components have not been added that are used to control dust in accordance with the SWPPP; and uncontaminated *discharges* from *construction site* de-watering operations. All non-stormwater discharges must be identified in the SWPPP. Under all circumstances, the *owner or operator* must still comply with *water quality standards* in Part I.D of this permit.
- 4. The *owner or operator* must maintain permit eligibility to *discharge* under this permit. Any *discharges* that are not compliant with the eligibility conditions of this permit are not authorized by the permit and the *owner or operator* must either apply for a separate permit to cover those ineligible *discharges* or take steps necessary to make the *discharge* eligible for coverage.

F. Activities Which Are Ineligible for Coverage Under This General Permit

All of the following are **<u>not</u>** authorized by this permit:

- 1. *Discharges* after *construction activities* have been completed and the site has undergone *final stabilization*;
- Discharges that are mixed with sources of non-stormwater other than those expressly authorized under subsection E.3. of this Part and identified in the SWPPP required by this permit;
- 3. *Discharges* that are required to obtain an individual SPDES permit or another SPDES general permit pursuant to Part VII.K. of this permit;
- 4. Construction activities or discharges from construction activities that may adversely affect an endangered or threatened species unless the owner or

operator has obtained a permit issued pursuant to 6 NYCRR Part 182 for the project or the Department has issued a letter of non-jurisdiction for the project. All documentation necessary to demonstrate eligibility shall be maintained on site in accordance with Part II.D.2 of this permit;

- 5. *Discharges* which either cause or contribute to a violation of *water quality standards* adopted pursuant to the *ECL* and its accompanying regulations;
- 6. Construction activities for residential, commercial and institutional projects:
 - a. Where the *discharges* from the *construction activities* are tributary to waters of the state classified as AA or AA-s; and
 - b. Which are undertaken on land with no existing *impervious cover*, and
 - c. Which disturb one (1) or more acres of land designated on the current United States Department of Agriculture ("USDA") Soil Survey as Soil Slope Phase "D", (provided the map unit name is inclusive of slopes greater than 25%), or Soil Slope Phase "E" or "F" (regardless of the map unit name), or a combination of the three designations.
- 7. *Construction activities* for linear transportation projects and linear utility projects:
 - a. Where the *discharges* from the *construction activities* are tributary to waters of the state classified as AA or AA-s; and
 - b. Which are undertaken on land with no existing impervious cover, and

c. Which disturb two (2) or more acres of land designated on the current USDA Soil Survey as Soil Slope Phase "D" (provided the map unit name is inclusive of slopes greater than 25%), or Soil Slope Phase "E" or "F" (regardless of the map unit name), or a combination of the three designations.

- 8. Construction activities that have the potential to affect an *historic property*, unless there is documentation that such impacts have been resolved. The following documentation necessary to demonstrate eligibility with this requirement shall be maintained on site in accordance with Part II.D.2 of this permit and made available to the Department in accordance with Part VII.F of this permit:
 - a. Documentation that the *construction activity* is not within an archeologically sensitive area indicated on the sensitivity map, and that the *construction activity* is not located on or immediately adjacent to a property listed or determined to be eligible for listing on the National or State Registers of Historic Places, and that there is no new permanent building on the *construction site* within the following distances from a building, structure, or object that is more than 50 years old, or if there is such a new permanent building on the *construction site* within those parameters that NYS Office of Parks, Recreation and Historic Preservation (OPRHP), a Historic Preservation Commission of a Certified Local Government, or a qualified preservation professional has determined that the building, structure, or object more than 50 years old is not historically/archeologically significant.
 - 1-5 acres of disturbance 20 feet
 - 5-20 acres of disturbance 50 feet
 - 20+ acres of disturbance 100 feet, or
 - b. DEC consultation form sent to OPRHP, and copied to the NYS DEC Agency Historic Preservation Officer (APO), and
 - the State Environmental Quality Review (SEQR) Environmental Assessment Form (EAF) with a negative declaration or the Findings Statement, with documentation of OPRHP's agreement with the resolution; or
 - (ii) documentation from OPRHP that the *construction activity* will result in No Impact; or
 - (iii) documentation from OPRHP providing a determination of No Adverse Impact; or
 - (iv) a Letter of Resolution signed by the owner/operator, OPRHP and the DEC APO which allows for this *construction activity* to be eligible for coverage under the general permit in terms of the State Historic Preservation Act (SHPA); or
 - c. Documentation of satisfactory compliance with Section 106 of the National Historic Preservation Act for a coterminous project area:

- (i) No Affect
- (ii) No Adverse Affect
- (iii) Executed Memorandum of Agreement, or
- d. Documentation that:
- (i) SHPA Section 14.09 has been completed by NYS DEC or another state agency.
- 9. *Discharges* from *construction activities* that are subject to an existing SPDES individual or general permit where a SPDES permit for *construction activity* has been terminated or denied; or where the *owner or operator* has failed to renew an expired individual permit.

Part II. PERMIT COVERAGE

A. How to Obtain Coverage

- An owner or operator of a construction activity that is not subject to the requirements of a regulated, traditional land use control MS4 must first prepare a SWPPP in accordance with all applicable requirements of this permit and then submit a completed Notice of Intent (NOI) to the Department to be authorized to discharge under this permit.
- 2. An owner or operator of a construction activity that is subject to the requirements of a regulated, traditional land use control MS4 must first prepare a SWPPP in accordance with all applicable requirements of this permit and then have the SWPPP reviewed and accepted by the regulated, traditional land use control MS4 prior to submitting the NOI to the Department. The owner or operator shall have the "MS4 SWPPP Acceptance" form signed in accordance with Part VII.H., and then submit that form along with a completed NOI to the Department.
- 3. The requirement for an *owner or operator* to have its SWPPP reviewed and accepted by the *regulated, traditional land use control MS4* prior to submitting the NOI to the Department does not apply to an *owner or operator* that is obtaining permit coverage in accordance with the requirements in Part II.F. (Change of *Owner or Operator*) or where the *owner or operator* of the *construction activity* is the *regulated, traditional land use control MS4*. This exemption does not apply to *construction activities* subject to the New York City Administrative Code.

B. Notice of Intent (NOI) Submittal

 Prior to December 21, 2020, an owner or operator shall use either the electronic (eNOI) or paper version of the NOI that the Department prepared. Both versions of the NOI are located on the Department's website (http://www.dec.ny.gov/). The paper version of the NOI shall be signed in accordance with Part VII.H. of this permit and submitted to the following address:

NOTICE OF INTENT NYS DEC, Bureau of Water Permits 625 Broadway, 4th Floor Albany, New York 12233-3505

- 2. Beginning December 21, 2020 and in accordance with EPA's 2015 NPDES Electronic Reporting Rule (40 CFR Part 127), the *owner or operator* must submit the NOI electronically using the *Department's* online NOI.
- 3. The *owner or operator* shall have the SWPPP preparer sign the "SWPPP Preparer Certification" statement on the NOI prior to submitting the form to the Department.
- 4. As of the date the NOI is submitted to the Department, the *owner or operator* shall make the NOI and SWPPP available for review and copying in accordance with the requirements in Part VII.F. of this permit.

C. Permit Authorization

- 1. An owner or operator shall not commence construction activity until their authorization to discharge under this permit goes into effect.
- 2. Authorization to *discharge* under this permit will be effective when the *owner or operator* has satisfied <u>all</u> of the following criteria:
 - a. project review pursuant to the State Environmental Quality Review Act ("SEQRA") have been satisfied, when SEQRA is applicable. See the Department's website (<u>http://www.dec.ny.gov/</u>) for more information,
 - b. where required, all necessary Department permits subject to the Uniform Procedures Act ("UPA") (see 6 NYCRR Part 621), or the equivalent from another New York State agency, have been obtained, unless otherwise notified by the Department pursuant to 6 NYCRR 621.3(a)(4). Owners or operators of construction activities that are required to obtain UPA permits

must submit a preliminary SWPPP to the appropriate DEC Permit Administrator at the Regional Office listed in Appendix F at the time all other necessary UPA permit applications are submitted. The preliminary SWPPP must include sufficient information to demonstrate that the *construction activity* qualifies for authorization under this permit,

- c. the final SWPPP has been prepared, and
- d. a complete NOI has been submitted to the Department in accordance with the requirements of this permit.
- 3. An *owner or operator* that has satisfied the requirements of Part II.C.2 above will be authorized to *discharge* stormwater from their *construction activity* in accordance with the following schedule:
 - a. For construction activities that are <u>not</u> subject to the requirements of a *regulated, traditional land use control MS4*:
 - (i) Five (5) business days from the date the Department receives a complete electronic version of the NOI (eNOI) for *construction activities* with a SWPPP that has been prepared in conformance with the design criteria in the technical standard referenced in Part III.B.1 and the *performance criteria* in the technical standard referenced in Parts III.B., 2 or 3, for *construction activities* that require post-construction stormwater management practices pursuant to Part III.C.; or
 - (ii) Sixty (60) business days from the date the Department receives a complete NOI (electronic or paper version) for *construction activities* with a SWPPP that has <u>not</u> been prepared in conformance with the design criteria in technical standard referenced in Part III.B.1. or, for *construction activities* that require post-construction stormwater management practices pursuant to Part III.C., the *performance criteria* in the technical standard referenced in Parts III.B., 2 or 3, or;
 - (iii) Ten (10) business days from the date the Department receives a complete paper version of the NOI for *construction activities* with a SWPPP that has been prepared in conformance with the design criteria in the technical standard referenced in Part III.B.1 and the *performance criteria* in the technical standard referenced in Parts III.B., 2 or 3, for *construction activities* that require post-construction stormwater management practices pursuant to Part III.C.

- b. For *construction activities* that are subject to the requirements of a *regulated, traditional land use control MS4*:
 - Five (5) business days from the date the Department receives both a complete electronic version of the NOI (eNOI) and signed "MS4 SWPPP Acceptance" form, or
 - (ii) Ten (10) business days from the date the Department receives both a complete paper version of the NOI and signed "MS4 SWPPP Acceptance" form.
- 4. Coverage under this permit authorizes stormwater *discharges* from only those areas of disturbance that are identified in the NOI. If an *owner or operator* wishes to have stormwater *discharges* from future or additional areas of disturbance authorized, they must submit a new NOI that addresses that phase of the development, unless otherwise notified by the Department. The *owner or operator* shall not *commence construction activity* on the future or additional areas until their authorization to *discharge* under this permit goes into effect in accordance with Part II.C. of this permit.

D. General Requirements For Owners or Operators With Permit Coverage

- The owner or operator shall ensure that the provisions of the SWPPP are implemented from the commencement of construction activity until all areas of disturbance have achieved *final stabilization* and the Notice of Termination ("NOT") has been submitted to the Department in accordance with Part V. of this permit. This includes any changes made to the SWPPP pursuant to Part III.A.4. of this permit.
- 2. The owner or operator shall maintain a copy of the General Permit (GP-0-20-001), NOI, NOI Acknowledgment Letter, SWPPP, MS4 SWPPP Acceptance form, inspection reports, responsible contractor's or subcontractor's certification statement (see Part III.A.6.), and all documentation necessary to demonstrate eligibility with this permit at the construction site until all disturbed areas have achieved final stabilization and the NOT has been submitted to the Department. The documents must be maintained in a secure location, such as a job trailer, on-site construction office, or mailbox with lock. The secure location must be accessible during normal business hours to an individual performing a compliance inspection.
- 3. The owner or operator of a construction activity shall not disturb greater than five (5) acres of soil at any one time without prior written authorization from the Department or, in areas under the jurisdiction of a *regulated, traditional land*

use control MS4, the regulated, traditional land use control MS4 (provided the regulated, traditional land use control MS4 is not the owner or operator of the construction activity). At a minimum, the owner or operator must comply with the following requirements in order to be authorized to disturb greater than five (5) acres of soil at any one time:

- a. The owner or operator shall have a qualified inspector conduct at least two (2) site inspections in accordance with Part IV.C. of this permit every seven (7) calendar days, for as long as greater than five (5) acres of soil remain disturbed. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.
- b. In areas where soil disturbance activity has temporarily or permanently ceased, the application of soil stabilization measures must be initiated by the end of the next business day and completed within seven (7) days from the date the current soil disturbance activity ceased. The soil stabilization measures selected shall be in conformance with the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016.
- c. The *owner or operator* shall prepare a phasing plan that defines maximum disturbed area per phase and shows required cuts and fills.
- d. The *owner or operator* shall install any additional site-specific practices needed to protect water quality.
- e. The *owner or operator* shall include the requirements above in their SWPPP.
- 4. In accordance with statute, regulations, and the terms and conditions of this permit, the Department may suspend or revoke an *owner's or operator's* coverage under this permit at any time if the Department determines that the SWPPP does not meet the permit requirements or consistent with Part VII.K..
- 5. Upon a finding of significant non-compliance with the practices described in the SWPPP or violation of this permit, the Department may order an immediate stop to all activity at the site until the non-compliance is remedied. The stop work order shall be in writing, describe the non-compliance in detail, and be sent to the *owner or operator*.
- 6. For construction activities that are subject to the requirements of a regulated, traditional land use control MS4, the owner or operator shall notify the

regulated, traditional land use control MS4 in writing of any planned amendments or modifications to the post-construction stormwater management practice component of the SWPPP required by Part III.A. 4. and 5. of this permit. Unless otherwise notified by the *regulated, traditional land use control MS4*, the owner or operator shall have the SWPPP amendments or modifications reviewed and accepted by the *regulated, traditional land use control MS4* prior to commencing construction of the post-construction stormwater management practice.

E. Permit Coverage for Discharges Authorized Under GP-0-15-002

 Upon renewal of SPDES General Permit for Stormwater Discharges from Construction Activity (Permit No. GP-0-15-002), an owner or operator of a construction activity with coverage under GP-0-15-002, as of the effective date of GP- 0-20-001, shall be authorized to discharge in accordance with GP- 0-20-001, unless otherwise notified by the Department.

An *owner or operator* may continue to implement the technical/design components of the post-construction stormwater management controls provided that such design was done in conformance with the technical standards in place at the time of initial project authorization. However, they must comply with the other, non-design provisions of GP-0-20-001.

F. Change of Owner or Operator

- When property ownership changes or when there is a change in operational control over the construction plans and specifications, the original owner or operator must notify the new owner or operator, in writing, of the requirement to obtain permit coverage by submitting a NOI with the Department. For construction activities subject to the requirements of a regulated, traditional land use control MS4, the original owner or operator must also notify the MS4, in writing, of the change in ownership at least 30 calendar days prior to the change in ownership.
- 2. Once the new *owner or operator* obtains permit coverage, the original *owner or operator* shall then submit a completed NOT with the name and permit identification number of the new *owner or operator* to the Department at the address in Part II.B.1. of this permit. If the original *owner or operator* maintains ownership of a portion of the *construction activity* and will disturb soil, they must maintain their coverage under the permit.
- 3. Permit coverage for the new *owner or operator* will be effective as of the date the Department receives a complete NOI, provided the original *owner or*

operator was not subject to a sixty (60) business day authorization period that has not expired as of the date the Department receives the NOI from the new owner or operator.

Part III. STORMWATER POLLUTION PREVENTION PLAN (SWPPP)

A. General SWPPP Requirements

- A SWPPP shall be prepared and implemented by the owner or operator of each construction activity covered by this permit. The SWPPP must document the selection, design, installation, implementation and maintenance of the control measures and practices that will be used to meet the effluent limitations in Part I.B. of this permit and where applicable, the post-construction stormwater management practice requirements in Part I.C. of this permit. The SWPPP shall be prepared prior to the submittal of the NOI. The NOI shall be submitted to the Department prior to the commencement of construction activity. A copy of the completed, final NOI shall be included in the SWPPP.
- 2. The SWPPP shall describe the erosion and sediment control practices and where required, post-construction stormwater management practices that will be used and/or constructed to reduce the *pollutants* in stormwater *discharges* and to assure compliance with the terms and conditions of this permit. In addition, the SWPPP shall identify potential sources of pollution which may reasonably be expected to affect the quality of stormwater *discharges*.
- 3. All SWPPPs that require the post-construction stormwater management practice component shall be prepared by a *qualified professional* that is knowledgeable in the principles and practices of stormwater management and treatment.
- 4. The *owner or operator* must keep the SWPPP current so that it at all times accurately documents the erosion and sediment controls practices that are being used or will be used during construction, and all post-construction stormwater management practices that will be constructed on the site. At a minimum, the *owner or operator* shall amend the SWPPP, including construction drawings:
 - a. whenever the current provisions prove to be ineffective in minimizing *pollutants* in stormwater *discharges* from the site;

- b. whenever there is a change in design, construction, or operation at the *construction site* that has or could have an effect on the *discharge* of *pollutants*;
- c. to address issues or deficiencies identified during an inspection by the *qualified inspector,* the Department or other regulatory authority; and
- d. to document the final construction conditions.
- 5. The Department may notify the *owner or operator* at any time that the SWPPP does not meet one or more of the minimum requirements of this permit. The notification shall be in writing and identify the provisions of the SWPPP that require modification. Within fourteen (14) calendar days of such notification, or as otherwise indicated by the Department, the *owner or operator* shall make the required changes to the SWPPP and submit written notification to the Department that the changes have been made. If the *owner or operator* does not respond to the Department's comments in the specified time frame, the Department may suspend the *owner's or operator's* coverage under this permit or require the *owner or operator* to obtain coverage under an individual SPDES permit in accordance with Part II.D.4. of this permit.
- 6. Prior to the commencement of construction activity, the owner or operator must identify the contractor(s) and subcontractor(s) that will be responsible for installing, constructing, repairing, replacing, inspecting and maintaining the erosion and sediment control practices included in the SWPPP; and the contractor(s) and subcontractor(s) that will be responsible for constructing the post-construction stormwater management practices included in the SWPPP. The owner or operator shall have each of the contractors and subcontractors identify at least one person from their company that will be responsible for implementation of the SWPPP. This person shall be known as the *trained contractor*. The owner or operator shall ensure that at least one *trained contractor* is on site on a daily basis when soil disturbance activities are being performed.

The *owner or operator* shall have each of the contractors and subcontractors identified above sign a copy of the following certification statement below before they commence any *construction activity*:

"I hereby certify under penalty of law that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the *qualified inspector* during a site inspection. I also understand that the *owner or operator* must comply with

(Part III.A.6)

the terms and conditions of the most current version of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater *discharges* from *construction activities* and that it is unlawful for any person to cause or contribute to a violation of *water quality standards*. Furthermore, I am aware that there are significant penalties for submitting false information, that I do not believe to be true, including the possibility of fine and imprisonment for knowing violations"

In addition to providing the certification statement above, the certification page must also identify the specific elements of the SWPPP that each contractor and subcontractor will be responsible for and include the name and title of the person providing the signature; the name and title of the *trained contractor* responsible for SWPPP implementation; the name, address and telephone number of the contracting firm; the address (or other identifying description) of the site; and the date the certification statement is signed. The *owner or operator* shall attach the certification statement(s) to the copy of the SWPPP that is maintained at the *construction site*. If new or additional contractors are hired to implement measures identified in the SWPPP after construction has commenced, they must also sign the certification statement and provide the information listed above.

7. For projects where the Department requests a copy of the SWPPP or inspection reports, the *owner or operator* shall submit the documents in both electronic (PDF only) and paper format within five (5) business days, unless otherwise notified by the Department.

B. Required SWPPP Contents

- 1. Erosion and sediment control component All SWPPPs prepared pursuant to this permit shall include erosion and sediment control practices designed in conformance with the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016. Where erosion and sediment control practices are not designed in conformance with the design criteria included in the technical standard, the *owner or operator* must demonstrate *equivalence* to the technical standard. At a minimum, the erosion and sediment control component of the SWPPP shall include the following:
 - a. Background information about the scope of the project, including the location, type and size of project

- b. A site map/construction drawing(s) for the project, including a general location map. At a minimum, the site map shall show the total site area; all improvements; areas of disturbance; areas that will not be disturbed; existing vegetation; on-site and adjacent off-site surface water(s); floodplain/floodway boundaries; wetlands and drainage patterns that could be affected by the *construction activity*; existing and final contours; locations of different soil types with boundaries; material, waste, borrow or equipment storage areas located on adjacent properties; and location(s) of the stormwater *discharge*(s);
- c. A description of the soil(s) present at the site, including an identification of the Hydrologic Soil Group (HSG);
- d. A construction phasing plan and sequence of operations describing the intended order of *construction activities*, including clearing and grubbing, excavation and grading, utility and infrastructure installation and any other activity at the site that results in soil disturbance;
- e. A description of the minimum erosion and sediment control practices to be installed or implemented for each *construction activity* that will result in soil disturbance. Include a schedule that identifies the timing of initial placement or implementation of each erosion and sediment control practice and the minimum time frames that each practice should remain in place or be implemented;
- f. A temporary and permanent soil stabilization plan that meets the requirements of this general permit and the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016, for each stage of the project, including initial land clearing and grubbing to project completion and achievement of *final stabilization*;
- g. A site map/construction drawing(s) showing the specific location(s), size(s), and length(s) of each erosion and sediment control practice;
- The dimensions, material specifications, installation details, and operation and maintenance requirements for all erosion and sediment control practices. Include the location and sizing of any temporary sediment basins and structural practices that will be used to divert flows from exposed soils;
- i. A maintenance inspection schedule for the contractor(s) identified in Part III.A.6. of this permit, to ensure continuous and effective operation of the erosion and sediment control practices. The maintenance inspection

schedule shall be in accordance with the requirements in the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016;

- j. A description of the pollution prevention measures that will be used to control litter, construction chemicals and construction debris from becoming a *pollutant* source in the stormwater *discharges*;
- k. A description and location of any stormwater *discharges* associated with industrial activity other than construction at the site, including, but not limited to, stormwater *discharges* from asphalt plants and concrete plants located on the *construction site*; and
- I. Identification of any elements of the design that are not in conformance with the design criteria in the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016. Include the reason for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is *equivalent* to the technical standard.
- Post-construction stormwater management practice component The owner or operator of any construction project identified in Table 2 of Appendix B as needing post-construction stormwater management practices shall prepare a SWPPP that includes practices designed in conformance with the applicable sizing criteria in Part I.C.2.a., c. or d. of this permit and the performance criteria in the technical standard, New York State Stormwater Management Design Manual dated January 2015

Where post-construction stormwater management practices are not designed in conformance with the *performance criteria* in the technical standard, the *owner or operator* must include in the SWPPP the reason(s) for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is *equivalent* to the technical standard.

The post-construction stormwater management practice component of the SWPPP shall include the following:

 a. Identification of all post-construction stormwater management practices to be constructed as part of the project. Include the dimensions, material specifications and installation details for each post-construction stormwater management practice;

- b. A site map/construction drawing(s) showing the specific location and size of each post-construction stormwater management practice;
- c. A Stormwater Modeling and Analysis Report that includes:
 - Map(s) showing pre-development conditions, including watershed/subcatchments boundaries, flow paths/routing, and design points;
 - Map(s) showing post-development conditions, including watershed/subcatchments boundaries, flow paths/routing, design points and post-construction stormwater management practices;
 - (iii) Results of stormwater modeling (i.e. hydrology and hydraulic analysis) for the required storm events. Include supporting calculations (model runs), methodology, and a summary table that compares pre and postdevelopment runoff rates and volumes for the different storm events;
 - (iv) Summary table, with supporting calculations, which demonstrates that each post-construction stormwater management practice has been designed in conformance with the *sizing criteria* included in the Design Manual;
 - (v) Identification of any *sizing criteria* that is not required based on the requirements included in Part I.C. of this permit; and
 - (vi) Identification of any elements of the design that are not in conformance with the *performance criteria* in the Design Manual. Include the reason(s) for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is *equivalent* to the Design Manual;
- d. Soil testing results and locations (test pits, borings);
- e. Infiltration test results, when required; and
- f. An operations and maintenance plan that includes inspection and maintenance schedules and actions to ensure continuous and effective operation of each post-construction stormwater management practice. The plan shall identify the entity that will be responsible for the long term operation and maintenance of each practice.

3. Enhanced Phosphorus Removal Standards - All construction projects identified in Table 2 of Appendix B that are located in the watersheds identified in Appendix C shall prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with the applicable *sizing criteria* in Part I.C.2. b., c. or d. of this permit and the *performance criteria*, Enhanced Phosphorus Removal Standards included in the Design Manual. At a minimum, the post-construction stormwater management practice component of the SWPPP shall include items 2.a - 2.f. above.

C. Required SWPPP Components by Project Type

Unless otherwise notified by the Department, *owners or operators* of *construction activities* identified in Table 1 of Appendix B are required to prepare a SWPPP that only includes erosion and sediment control practices designed in conformance with Part III.B.1 of this permit. *Owners or operators* of the *construction activities* identified in Table 2 of Appendix B shall prepare a SWPPP that also includes post-construction stormwater management practices designed in conformance with Part III.B.2 or 3 of this permit.

Part IV. INSPECTION AND MAINTENANCE REQUIREMENTS

A. General Construction Site Inspection and Maintenance Requirements

- 1. The *owner or operator* must ensure that all erosion and sediment control practices (including pollution prevention measures) and all post-construction stormwater management practices identified in the SWPPP are inspected and maintained in accordance with Part IV.B. and C. of this permit.
- 2. The terms of this permit shall not be construed to prohibit the State of New York from exercising any authority pursuant to the ECL, common law or federal law, or prohibit New York State from taking any measures, whether civil or criminal, to prevent violations of the laws of the State of New York or protect the public health and safety and/or the environment.

B. Contractor Maintenance Inspection Requirements

1. The owner or operator of each construction activity identified in Tables 1 and 2 of Appendix B shall have a *trained contractor* inspect the erosion and sediment control practices and pollution prevention measures being implemented within the active work area daily to ensure that they are being maintained in effective operating condition at all times. If deficiencies are identified, the contractor shall

begin implementing corrective actions within one business day and shall complete the corrective actions in a reasonable time frame.

- 2. For construction sites where soil disturbance activities have been temporarily suspended (e.g. winter shutdown) and *temporary stabilization* measures have been applied to all disturbed areas, the *trained contractor* can stop conducting the maintenance inspections. The *trained contractor* shall begin conducting the maintenance inspections in accordance with Part IV.B.1. of this permit as soon as soil disturbance activities resume.
- 3. For construction sites where soil disturbance activities have been shut down with partial project completion, the *trained contractor* can stop conducting the maintenance inspections if all areas disturbed as of the project shutdown date have achieved *final stabilization* and all post-construction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational.

C. Qualified Inspector Inspection Requirements

The owner or operator shall have a *qualified inspector* conduct site inspections in conformance with the following requirements:

[Note: The *trained contractor* identified in Part III.A.6. and IV.B. of this permit **cannot** conduct the *qualified inspector* site inspections unless they meet the *qualified inspector* qualifications included in Appendix A. In order to perform these inspections, the *trained contractor* would have to be a:

- licensed Professional Engineer,
- Certified Professional in Erosion and Sediment Control (CPESC),
- New York State Erosion and Sediment Control Certificate Program holder
- Registered Landscape Architect, or
- someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided they have received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity].
- 1. A *qualified inspector* shall conduct site inspections for all *construction activities* identified in Tables 1 and 2 of Appendix B, <u>with the exception of</u>:
 - a. the construction of a single family residential subdivision with 25% or less *impervious cover* at total site build-out that involves a soil disturbance of one (1) or more acres of land but less than five (5) acres and is <u>not</u> located

in one of the watersheds listed in Appendix C and <u>not</u> directly discharging to one of the 303(d) segments listed in Appendix E;

- b. the construction of a single family home that involves a soil disturbance of one (1) or more acres of land but less than five (5) acres and is <u>not</u> located in one of the watersheds listed in Appendix C and <u>not</u> directly discharging to one of the 303(d) segments listed in Appendix E;
- c. construction on agricultural property that involves a soil disturbance of one
 (1) or more acres of land but less than five (5) acres; and
- d. *construction activities* located in the watersheds identified in Appendix D that involve soil disturbances between five thousand (5,000) square feet and one (1) acre of land.
- 2. Unless otherwise notified by the Department, the *qualified inspector* shall conduct site inspections in accordance with the following timetable:
 - a. For construction sites where soil disturbance activities are on-going, the *qualified inspector* shall conduct a site inspection at least once every seven (7) calendar days.
 - b. For construction sites where soil disturbance activities are on-going and the owner or operator has received authorization in accordance with Part II.D.3 to disturb greater than five (5) acres of soil at any one time, the *qualified inspector* shall conduct at least two (2) site inspections every seven (7) calendar days. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.
 - c. For construction sites where soil disturbance activities have been temporarily suspended (e.g. winter shutdown) and *temporary stabilization* measures have been applied to all disturbed areas, the *qualified inspector* shall conduct a site inspection at least once every thirty (30) calendar days. The *owner or operator* shall notify the DOW Water (SPDES) Program contact at the Regional Office (see contact information in Appendix F) or, in areas under the jurisdiction of a *regulated, traditional land use control MS4*, the *regulated, traditional land use control MS4* (provided the *regulated, traditional land use control MS4* is not the *owner or operator* of the *construction activity*) in writing prior to reducing the frequency of inspections.

- d. For construction sites where soil disturbance activities have been shut down with partial project completion, the *qualified inspector* can stop conducting inspections if all areas disturbed as of the project shutdown date have achieved final stabilization and all post-construction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational. The owner or operator shall notify the DOW Water (SPDES) Program contact at the Regional Office (see contact information in Appendix F) or, in areas under the jurisdiction of a regulated, traditional land use control MS4, the regulated, traditional land use control MS4 (provided the regulated, traditional land use control MS4 is not the owner or operator of the construction activity) in writing prior to the shutdown. If soil disturbance activities are not resumed within 2 years from the date of shutdown, the owner or operator shall have the qualified inspector perform a final inspection and certify that all disturbed areas have achieved final stabilization, and all temporary, structural erosion and sediment control measures have been removed; and that all post-construction stormwater management practices have been constructed in conformance with the SWPPP by signing the "Final Stabilization" and "Post-Construction" Stormwater Management Practice" certification statements on the NOT. The owner or operator shall then submit the completed NOT form to the address in Part II.B.1 of this permit.
- e. For construction sites that directly *discharge* to one of the 303(d) segments listed in Appendix E or is located in one of the watersheds listed in Appendix C, the *qualified inspector* shall conduct at least two (2) site inspections every seven (7) calendar days. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.
- 3. At a minimum, the *qualified inspector* shall inspect all erosion and sediment control practices and pollution prevention measures to ensure integrity and effectiveness, all post-construction stormwater management practices under construction to ensure that they are constructed in conformance with the SWPPP, all areas of disturbance that have not achieved *final stabilization,* all points of *discharge* to natural surface waterbodies located within, or immediately adjacent to, the property boundaries of the *construction site*, and all points of *discharge* from the *construction site*.
- 4. The *qualified inspector* shall prepare an inspection report subsequent to each and every inspection. At a minimum, the inspection report shall include and/or address the following:

- a. Date and time of inspection;
- b. Name and title of person(s) performing inspection;
- c. A description of the weather and soil conditions (e.g. dry, wet, saturated) at the time of the inspection;
- d. A description of the condition of the runoff at all points of *discharge* from the *construction site*. This shall include identification of any *discharges* of sediment from the *construction site*. Include *discharges* from conveyance systems (i.e. pipes, culverts, ditches, etc.) and overland flow;
- e. A description of the condition of all natural surface waterbodies located within, or immediately adjacent to, the property boundaries of the *construction site* which receive runoff from disturbed areas. This shall include identification of any *discharges* of sediment to the surface waterbody;
- f. Identification of all erosion and sediment control practices and pollution prevention measures that need repair or maintenance;
- Identification of all erosion and sediment control practices and pollution prevention measures that were not installed properly or are not functioning as designed and need to be reinstalled or replaced;
- Description and sketch of areas with active soil disturbance activity, areas that have been disturbed but are inactive at the time of the inspection, and areas that have been stabilized (temporary and/or final) since the last inspection;
- i. Current phase of construction of all post-construction stormwater management practices and identification of all construction that is not in conformance with the SWPPP and technical standards;
- j. Corrective action(s) that must be taken to install, repair, replace or maintain erosion and sediment control practices and pollution prevention measures; and to correct deficiencies identified with the construction of the postconstruction stormwater management practice(s);
- k. Identification and status of all corrective actions that were required by previous inspection; and

- I. Digital photographs, with date stamp, that clearly show the condition of all practices that have been identified as needing corrective actions. The *qualified inspector* shall attach paper color copies of the digital photographs to the inspection report being maintained onsite within seven (7) calendar days of the date of the inspection. The *qualified inspector* shall also take digital photographs, with date stamp, that clearly show the condition of the practice(s) after the corrective action has been completed. The *qualified inspector* shall attach paper color copies of the digital photographs to the inspection report that documents the completion of the corrective action work within seven (7) calendar days of that inspection.
- 5. Within one business day of the completion of an inspection, the *qualified inspector* shall notify the *owner or operator* and appropriate contractor or subcontractor identified in Part III.A.6. of this permit of any corrective actions that need to be taken. The contractor or subcontractor shall begin implementing the corrective actions within one business day of this notification and shall complete the corrective actions in a reasonable time frame.
- 6. All inspection reports shall be signed by the *qualified inspector*. Pursuant to Part II.D.2. of this permit, the inspection reports shall be maintained on site with the SWPPP.

Part V. TERMINATION OF PERMIT COVERAGE

A. Termination of Permit Coverage

- An owner or operator that is eligible to terminate coverage under this permit must submit a completed NOT form to the address in Part II.B.1 of this permit. The NOT form shall be one which is associated with this permit, signed in accordance with Part VII.H of this permit.
- 2. An *owner or operator* may terminate coverage when one or more the following conditions have been met:
 - a. Total project completion All *construction activity* identified in the SWPPP has been completed; <u>and</u> all areas of disturbance have achieved *final stabilization*; <u>and</u> all temporary, structural erosion and sediment control measures have been removed; <u>and</u> all post-construction stormwater management practices have been constructed in conformance with the SWPPP and are operational;

- b. Planned shutdown with partial project completion All soil disturbance activities have ceased; and all areas disturbed as of the project shutdown date have achieved *final stabilization*; and all temporary, structural erosion and sediment control measures have been removed; and all postconstruction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational;
- c. A new *owner or operator* has obtained coverage under this permit in accordance with Part II.F. of this permit.
- d. The *owner or operator* obtains coverage under an alternative SPDES general permit or an individual SPDES permit.
- 3. For *construction activities* meeting subdivision 2a. or 2b. of this Part, the *owner or operator* shall have the *qualified inspector* perform a final site inspection prior to submitting the NOT. The *qualified inspector* shall, by signing the "*Final Stabilization*" and "Post-Construction Stormwater Management Practice certification statements on the NOT, certify that all the requirements in Part V.A.2.a. or b. of this permit have been achieved.
- 4. For construction activities that are subject to the requirements of a regulated, traditional land use control MS4 and meet subdivision 2a. or 2b. of this Part, the owner or operator shall have the regulated, traditional land use control MS4 sign the "MS4 Acceptance" statement on the NOT in accordance with the requirements in Part VII.H. of this permit. The regulated, traditional land use control MS4 official, by signing this statement, has determined that it is acceptable for the owner or operator to submit the NOT in accordance with the requirements of this Part. The regulated, traditional land use control MS4 can make this determination by performing a final site inspection themselves or by accepting the qualified inspector's final site inspection certification(s) required in Part V.A.3. of this permit.
- 5. For *construction activities* that require post-construction stormwater management practices and meet subdivision 2a. of this Part, the *owner or operator* must, prior to submitting the NOT, ensure one of the following:
 - a. the post-construction stormwater management practice(s) and any right-ofway(s) needed to maintain such practice(s) have been deeded to the municipality in which the practice(s) is located,

- b. an executed maintenance agreement is in place with the municipality that will maintain the post-construction stormwater management practice(s),
- c. for post-construction stormwater management practices that are privately owned, the *owner or operator* has a mechanism in place that requires operation and maintenance of the practice(s) in accordance with the operation and maintenance plan, such as a deed covenant in the *owner or operator's* deed of record,
- d. for post-construction stormwater management practices that are owned by a public or private institution (e.g. school, university, hospital), government agency or authority, or public utility; the *owner or operator* has policy and procedures in place that ensures operation and maintenance of the practices in accordance with the operation and maintenance plan.

Part VI. REPORTING AND RETENTION RECORDS

A. Record Retention

The owner or operator shall retain a copy of the NOI, NOI

Acknowledgment Letter, SWPPP, MS4 SWPPP Acceptance form and any inspection reports that were prepared in conjunction with this permit for a period of at least five (5) years from the date that the Department receives a complete NOT submitted in accordance with Part V. of this general permit.

B. Addresses

With the exception of the NOI, NOT, and MS4 SWPPP Acceptance form (which must be submitted to the address referenced in Part II.B.1 of this permit), all written correspondence requested by the Department, including individual permit applications, shall be sent to the address of the appropriate DOW Water (SPDES) Program contact at the Regional Office listed in Appendix F.

Part VII. STANDARD PERMIT CONDITIONS

A. Duty to Comply

The *owner or operator* must comply with all conditions of this permit. All contractors and subcontractors associated with the project must comply with the terms of the SWPPP. Any non-compliance with this permit constitutes a violation of the Clean Water

(Part VII.A)

Act (CWA) and the ECL and is grounds for an enforcement action against the *owner or operator* and/or the contractor/subcontractor; permit revocation, suspension or modification; or denial of a permit renewal application. Upon a finding of significant non-compliance with this permit or the applicable SWPPP, the Department may order an immediate stop to all *construction activity* at the site until the non-compliance is remedied. The stop work order shall be in writing, shall describe the non-compliance in detail, and shall be sent to the *owner or operator*.

If any human remains or archaeological remains are encountered during excavation, the *owner or operator* must immediately cease, or cause to cease, all *construction activity* in the area of the remains and notify the appropriate Regional Water Engineer (RWE). *Construction activity* shall not resume until written permission to do so has been received from the RWE.

B. Continuation of the Expired General Permit

This permit expires five (5) years from the effective date. If a new general permit is not issued prior to the expiration of this general permit, an *owner or operator* with coverage under this permit may continue to operate and *discharge* in accordance with the terms and conditions of this general permit, if it is extended pursuant to the State Administrative Procedure Act and 6 NYCRR Part 621, until a new general permit is issued.

C. Enforcement

Failure of the *owner or operator,* its contractors, subcontractors, agents and/or assigns to strictly adhere to any of the permit requirements contained herein shall constitute a violation of this permit. There are substantial criminal, civil, and administrative penalties associated with violating the provisions of this permit. Fines of up to \$37,500 per day for each violation and imprisonment for up to fifteen (15) years may be assessed depending upon the nature and degree of the offense.

D. Need to Halt or Reduce Activity Not a Defense

It shall not be a defense for an *owner or operator* in an enforcement action that it would have been necessary to halt or reduce the *construction activity* in order to maintain compliance with the conditions of this permit.

E. Duty to Mitigate

The owner or operator and its contractors and subcontractors shall take all reasonable steps to *minimize* or prevent any *discharge* in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment.

F. Duty to Provide Information

The owner or operator shall furnish to the Department, within a reasonable specified time period of a written request, all documentation necessary to demonstrate eligibility and any information to determine compliance with this permit or to determine whether cause exists for modifying or revoking this permit, or suspending or denying coverage under this permit, in accordance with the terms and conditions of this permit. The NOI, SWPPP and inspection reports required by this permit are public documents that the owner or operator must make available for review and copying by any person within five (5) business days of the owner or operator receiving a written request by any such person to review these documents. Copying of documents will be done at the requester's expense.

G. Other Information

When the *owner or operator* becomes aware that they failed to submit any relevant facts, or submitted incorrect information in the NOI or in any of the documents required by this permit, or have made substantive revisions to the SWPPP (e.g. the scope of the project changes significantly, the type of post-construction stormwater management practice(s) changes, there is a reduction in the sizing of the post-construction stormwater management practice, or there is an increase in the disturbance area or *impervious area*), which were not reflected in the original NOI submitted to the Department, they shall promptly submit such facts or information to the Department using the contact information in Part II.A. of this permit. Failure of the *owner or operator* to correct or supplement any relevant facts within five (5) business days of becoming aware of the deficiency shall constitute a violation of this permit.

H. Signatory Requirements

- 1. All NOIs and NOTs shall be signed as follows:
 - a. For a corporation these forms shall be signed by a responsible corporate officer. For the purpose of this section, a responsible corporate officer means:

- a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation; or
- (ii) the manager of one or more manufacturing, production or operating facilities, provided the manager is authorized to make management decisions which govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiating and directing other comprehensive measures to assure long term environmental compliance with environmental laws and regulations; the manager can ensure that the necessary systems are established or actions taken to gather complete and accurate information for permit application requirements; and where authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures;
- b. For a partnership or sole proprietorship these forms shall be signed by a general partner or the proprietor, respectively; or
- c. For a municipality, State, Federal, or other public agency these forms shall be signed by either a principal executive officer or ranking elected official. For purposes of this section, a principal executive officer of a Federal agency includes:
 - (i) the chief executive officer of the agency, or
 - (ii) a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., Regional Administrators of EPA).
- 2. The SWPPP and other information requested by the Department shall be signed by a person described in Part VII.H.1. of this permit or by a duly authorized representative of that person. A person is a duly authorized representative only if:
 - a. The authorization is made in writing by a person described in Part VII.H.1. of this permit;
 - b. The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or activity, such as the position of plant manager, operator of a well or a well field,

superintendent, position of *equivalent* responsibility, or an individual or position having overall responsibility for environmental matters for the company. (A duly authorized representative may thus be either a named individual or any individual occupying a named position) and,

- c. The written authorization shall include the name, title and signature of the authorized representative and be attached to the SWPPP.
- 3. All inspection reports shall be signed by the *qualified inspector* that performs the inspection.
- 4. The MS4 SWPPP Acceptance form shall be signed by the principal executive officer or ranking elected official from the *regulated, traditional land use control MS4,* or by a duly authorized representative of that person.

It shall constitute a permit violation if an incorrect and/or improper signatory authorizes any required forms, SWPPP and/or inspection reports.

I. Property Rights

The issuance of this permit does not convey any property rights of any sort, nor any exclusive privileges, nor does it authorize any injury to private property nor any invasion of personal rights, nor any infringement of Federal, State or local laws or regulations. *Owners or operators* must obtain any applicable conveyances, easements, licenses and/or access to real property prior to *commencing construction activity*.

J. Severability

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit shall not be affected thereby.

K. Requirement to Obtain Coverage Under an Alternative Permit

1. The Department may require any owner or operator authorized by this permit to apply for and/or obtain either an individual SPDES permit or another SPDES general permit. When the Department requires any discharger authorized by a general permit to apply for an individual SPDES permit, it shall notify the discharger in writing that a permit application is required. This notice shall

include a brief statement of the reasons for this decision, an application form, a statement setting a time frame for the owner or operator to file the application for an individual SPDES permit, and a deadline, not sooner than 180 days from owner or operator receipt of the notification letter, whereby the authorization to discharge under this general permit shall be terminated. Applications must be submitted to the appropriate Permit Administrator at the Regional Office. The Department may grant additional time upon demonstration, to the satisfaction of the Department, that additional time to apply for an alternative authorization is necessary or where the Department has not provided a permit determination in accordance with Part 621 of this Title.

2. When an individual SPDES permit is issued to a discharger authorized to *discharge* under a general SPDES permit for the same *discharge*(s), the general permit authorization for outfalls authorized under the individual SPDES permit is automatically terminated on the effective date of the individual permit unless termination is earlier in accordance with 6 NYCRR Part 750.

L. Proper Operation and Maintenance

The owner or operator shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the owner or operator to achieve compliance with the conditions of this permit and with the requirements of the SWPPP.

M. Inspection and Entry

The owner or operator shall allow an authorized representative of the Department, EPA, applicable county health department, or, in the case of a *construction site* which *discharges* through an *MS4*, an authorized representative of the *MS4* receiving the discharge, upon the presentation of credentials and other documents as may be required by law, to:

- 1. Enter upon the owner's or operator's premises where a regulated facility or activity is located or conducted or where records must be kept under the conditions of this permit;
- 2. Have access to and copy at reasonable times, any records that must be kept under the conditions of this permit; and

- 3. Inspect at reasonable times any facilities or equipment (including monitoring and control equipment), practices or operations regulated or required by this permit.
- 4. Sample or monitor at reasonable times, for purposes of assuring permit compliance or as otherwise authorized by the Act or ECL, any substances or parameters at any location.

N. Permit Actions

This permit may, at any time, be modified, suspended, revoked, or renewed by the Department in accordance with 6 NYCRR Part 621. The filing of a request by the *owner or operator* for a permit modification, revocation and reissuance, termination, a notification of planned changes or anticipated noncompliance does not limit, diminish and/or stay compliance with any terms of this permit.

O. Definitions

Definitions of key terms are included in Appendix A of this permit.

P. Re-Opener Clause

- If there is evidence indicating potential or realized impacts on water quality due to any stormwater discharge associated with construction activity covered by this permit, the owner or operator of such discharge may be required to obtain an individual permit or alternative general permit in accordance with Part VII.K. of this permit or the permit may be modified to include different limitations and/or requirements.
- 2. Any Department initiated permit modification, suspension or revocation will be conducted in accordance with 6 NYCRR Part 621, 6 NYCRR 750-1.18, and 6 NYCRR 750-1.20.

Q. Penalties for Falsification of Forms and Reports

In accordance with 6NYCRR Part 750-2.4 and 750-2.5, any person who knowingly makes any false material statement, representation, or certification in any application, record, report or other document filed or required to be maintained under this permit, including reports of compliance or noncompliance shall, upon conviction, be punished in accordance with ECL §71-1933 and or Articles 175 and 210 of the New York State Penal Law.

R. Other Permits

Nothing in this permit relieves the *owner or operator* from a requirement to obtain any other permits required by law.

APPENDIX A – Acronyms and Definitions

Acronyms

APO – Agency Preservation Officer

BMP – Best Management Practice

CPESC – Certified Professional in Erosion and Sediment Control

Cpv – Channel Protection Volume

CWA – Clean Water Act (or the Federal Water Pollution Control Act, 33 U.S.C. §1251 et seq)

DOW – Division of Water

EAF – Environmental Assessment Form

ECL - Environmental Conservation Law

EPA – U. S. Environmental Protection Agency

HSG – Hydrologic Soil Group

MS4 – Municipal Separate Storm Sewer System

NOI – Notice of Intent

NOT – Notice of Termination

NPDES – National Pollutant Discharge Elimination System

OPRHP – Office of Parks, Recreation and Historic Places

Qf – Extreme Flood

Qp – Overbank Flood

RRv – Runoff Reduction Volume

RWE - Regional Water Engineer

SEQR – State Environmental Quality Review

SEQRA - State Environmental Quality Review Act

SHPA – State Historic Preservation Act

SPDES – State Pollutant Discharge Elimination System

SWPPP – Stormwater Pollution Prevention Plan

TMDL – Total Maximum Daily Load

UPA – Uniform Procedures Act

USDA – United States Department of Agriculture

WQv – Water Quality Volume

Definitions

<u>All definitions in this section are solely for the purposes of this permit.</u> **Agricultural Building –** a structure designed and constructed to house farm implements, hay, grain, poultry, livestock or other horticultural products; excluding any structure designed, constructed or used, in whole or in part, for human habitation, as a place of employment where agricultural products are processed, treated or packaged, or as a place used by the public.

Agricultural Property –means the land for construction of a barn, *agricultural building*, silo, stockyard, pen or other structural practices identified in Table II in the "Agricultural Management Practices Catalog for Nonpoint Source Pollution in New York State" prepared by the Department in cooperation with agencies of New York Nonpoint Source Coordinating Committee (dated June 2007).

Alter Hydrology from Pre to Post-Development Conditions - means the postdevelopment peak flow rate(s) has increased by more than 5% of the pre-developed condition for the design storm of interest (e.g. 10 yr and 100 yr).

Combined Sewer - means a sewer that is designed to collect and convey both "sewage" and "stormwater".

Commence (Commencement of) Construction Activities - means the initial disturbance of soils associated with clearing, grading or excavation activities; or other construction related activities that disturb or expose soils such as demolition, stockpiling of fill material, and the initial installation of erosion and sediment control practices required in the SWPPP. See definition for "*Construction Activity(ies)*" also.

Construction Activity(ies) - means any clearing, grading, excavation, filling, demolition or stockpiling activities that result in soil disturbance. Clearing activities can include, but are not limited to, logging equipment operation, the cutting and skidding of trees, stump removal and/or brush root removal. Construction activity does not include routine maintenance that is performed to maintain the original line and grade, hydraulic capacity, or original purpose of a facility.

Construction Site – means the land area where *construction activity(ies)* will occur. See definition for "*Commence (Commencement of) Construction Activities*" and "*Larger Common Plan of Development or Sale*" also.

Dewatering – means the act of draining rainwater and/or groundwater from building foundations, vaults or excavations/trenches.

Direct Discharge (to a specific surface waterbody) - means that runoff flows from a *construction site* by overland flow and the first point of discharge is the specific surface waterbody, or runoff flows from a *construction site* to a separate storm sewer system

and the first point of discharge from the separate storm sewer system is the specific surface waterbody.

Discharge(s) - means any addition of any pollutant to waters of the State through an outlet or *point source*.

Embankment – means an earthen or rock slope that supports a road/highway.

Endangered or Threatened Species – see 6 NYCRR Part 182 of the Department's rules and regulations for definition of terms and requirements.

Environmental Conservation Law (ECL) - means chapter 43-B of the Consolidated Laws of the State of New York, entitled the Environmental Conservation Law.

Equivalent (Equivalence) – means that the practice or measure meets all the performance, longevity, maintenance, and safety objectives of the technical standard and will provide an equal or greater degree of water quality protection.

Final Stabilization - means that all soil disturbance activities have ceased and a uniform, perennial vegetative cover with a density of eighty (80) percent over the entire pervious surface has been established; or other equivalent stabilization measures, such as permanent landscape mulches, rock rip-rap or washed/crushed stone have been applied on all disturbed areas that are not covered by permanent structures, concrete or pavement.

General SPDES permit - means a SPDES permit issued pursuant to 6 NYCRR Part 750-1.21 and Section 70-0117 of the ECL authorizing a category of discharges.

Groundwater(s) - means waters in the saturated zone. The saturated zone is a subsurface zone in which all the interstices are filled with water under pressure greater than that of the atmosphere. Although the zone may contain gas-filled interstices or interstices filled with fluids other than water, it is still considered saturated.

Historic Property – means any building, structure, site, object or district that is listed on the State or National Registers of Historic Places or is determined to be eligible for listing on the State or National Registers of Historic Places.

Impervious Area (Cover) - means all impermeable surfaces that cannot effectively infiltrate rainfall. This includes paved, concrete and gravel surfaces (i.e. parking lots, driveways, roads, runways and sidewalks); building rooftops and miscellaneous impermeable structures such as patios, pools, and sheds.

Infeasible – means not technologically possible, or not economically practicable and achievable in light of best industry practices.

Larger Common Plan of Development or Sale - means a contiguous area where multiple separate and distinct *construction activities* are occurring, or will occur, under one plan. The term "plan" in "larger common plan of development or sale" is broadly defined as any announcement or piece of documentation (including a sign, public notice or hearing, marketing plan, advertisement, drawing, permit application, State Environmental Quality Review Act (SEQRA) environmental assessment form or other documents, zoning request, computer design, etc.) or physical demarcation (including boundary signs, lot stakes, surveyor markings, etc.) indicating that *construction activities* may occur on a specific plot.

For discrete construction projects that are located within a larger common plan of development or sale that are at least 1/4 mile apart, each project can be treated as a separate plan of development or sale provided any interconnecting road, pipeline or utility project that is part of the same "common plan" is not concurrently being disturbed.

Minimize – means reduce and/or eliminate to the extent achievable using control measures (including best management practices) that are technologically available and economically practicable and achievable in light of best industry practices.

Municipal Separate Storm Sewer (MS4) - a conveyance or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, man-made channels, or storm drains):

- (i) Owned or operated by a State, city, town, borough, county, parish, district, association, or other public body (created by or pursuant to State law) having jurisdiction over disposal of sewage, industrial wastes, stormwater, or other wastes, including special districts under State law such as a sewer district, flood control district or drainage district, or similar entity, or an Indian tribe or an authorized Indian tribal organization, or a designated and approved management agency under section 208 of the CWA that discharges to surface waters of the State;
- (ii) Designed or used for collecting or conveying stormwater;
- (iii) Which is not a combined sewer; and
- (iv) Which is not part of a Publicly Owned Treatment Works (POTW) as defined at 40 CFR 122.2.

National Pollutant Discharge Elimination System (NPDES) - means the national system for the issuance of wastewater and stormwater permits under the Federal Water Pollution Control Act (Clean Water Act).

Natural Buffer – means an undisturbed area with natural cover running along a surface water (e.g. wetland, stream, river, lake, etc.).

New Development – means any land disturbance that does not meet the definition of Redevelopment Activity included in this appendix.

New York State Erosion and Sediment Control Certificate Program – a certificate program that establishes and maintains a process to identify and recognize individuals who are capable of developing, designing, inspecting and maintaining erosion and sediment control plans on projects that disturb soils in New York State. The certificate program is administered by the New York State Conservation District Employees Association.

NOI Acknowledgment Letter - means the letter that the Department sends to an owner or operator to acknowledge the Department's receipt and acceptance of a complete Notice of Intent. This letter documents the owner's or operator's authorization to discharge in accordance with the general permit for stormwater discharges from *construction activity*.

Nonpoint Source - means any source of water pollution or pollutants which is not a discrete conveyance or *point source* permitted pursuant to Title 7 or 8 of Article 17 of the Environmental Conservation Law (see ECL Section 17-1403).

Overbank –means flow events that exceed the capacity of the stream channel and spill out into the adjacent floodplain.

Owner or Operator - means the person, persons or legal entity which owns or leases the property on which the *construction activity* is occurring; an entity that has operational control over the construction plans and specifications, including the ability to make modifications to the plans and specifications; and/or an entity that has day-to-day operational control of those activities at a project that are necessary to ensure compliance with the permit conditions.

Performance Criteria – means the design criteria listed under the "Required Elements" sections in Chapters 5, 6 and 10 of the technical standard, New York State Stormwater Management Design Manual, dated January 2015. It does not include the Sizing Criteria (i.e. WQv, RRv, Cpv, Qp and Qf) in Part I.C.2. of the permit.

Point Source - means any discernible, confined and discrete conveyance, including but not limited to any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation, vessel or other floating craft, or landfill leachate collection system from which *pollutants* are or may be discharged.

Pollutant - means dredged spoil, filter backwash, solid waste, incinerator residue, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials, heat, wrecked or discarded equipment, rock, sand and industrial, municipal, agricultural waste and ballast discharged into water; which may cause or might reasonably be expected to cause pollution of the waters of the state in contravention of the standards or guidance values adopted as provided in 6 NYCRR Parts 700 et seq.

Qualified Inspector - means a person that is knowledgeable in the principles and practices of erosion and sediment control, such as a licensed Professional Engineer, Certified Professional in Erosion and Sediment Control (CPESC), Registered Landscape Architect, New York State Erosion and Sediment Control Certificate Program holder or other Department endorsed individual(s).

It can also mean someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided that person has training in the principles and practices of erosion and sediment control. Training in the principles and practices of erosion and sediment control means that the individual working under the direct supervision of the licensed Professional Engineer or Registered Landscape Architect has received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity. After receiving the initial training, the individual working under the direct supervision of the licensed Professional Engineer or Registered Landscape Architect supervision of the licensed receiving the initial training, the individual working under the direct supervision of the licensed Professional Engineer or Registered Landscape Architect supervision of the licensed Professional Engineer or Registered Landscape Architect supervision of the licensed Professional Engineer or Registered Landscape Architect supervision of the licensed Professional Engineer or Registered Landscape Architect shall receive four (4) hours of training every three (3) years.

It can also mean a person that meets the *Qualified Professional* qualifications in addition to the *Qualified Inspector* qualifications.

Note: Inspections of any post-construction stormwater management practices that include structural components, such as a dam for an impoundment, shall be performed by a licensed Professional Engineer.

Qualified Professional - means a person that is knowledgeable in the principles and practices of stormwater management and treatment, such as a licensed Professional Engineer, Registered Landscape Architect or other Department endorsed individual(s). Individuals preparing SWPPPs that require the post-construction stormwater management practice component must have an understanding of the principles of hydrology, water quality management practice design, water quantity control design, and, in many cases, the principles of hydraulics. All components of the SWPPP that involve the practice of engineering, as defined by the NYS Education Law (see Article 145), shall be prepared by, or under the direct supervision of, a professional engineer licensed to practice in the State of New York.

Redevelopment Activity(ies) – means the disturbance and reconstruction of existing impervious area, including impervious areas that were removed from a project site within five (5) years of preliminary project plan submission to the local government (i.e. site plan, subdivision, etc.).

Regulated, Traditional Land Use Control MS4 - means a city, town or village with land use control authority that is authorized to discharge under New York State DEC's

SPDES General Permit For Stormwater Discharges from Municipal Separate Stormwater Sewer Systems (MS4s) or the City of New York's Individual SPDES Permit for their Municipal Separate Storm Sewer Systems (NY-0287890).

Routine Maintenance Activity - means *construction activity* that is performed to maintain the original line and grade, hydraulic capacity, or original purpose of a facility, including, but not limited to:

- Re-grading of gravel roads or parking lots,
- Cleaning and shaping of existing roadside ditches and culverts that maintains the approximate original line and grade, and hydraulic capacity of the ditch,
- Cleaning and shaping of existing roadside ditches that does not maintain the approximate original grade, hydraulic capacity and purpose of the ditch if the changes to the line and grade, hydraulic capacity or purpose of the ditch are installed to improve water quality and quantity controls (e.g. installing grass lined ditch),
- Placement of aggregate shoulder backing that stabilizes the transition between the road shoulder and the ditch or *embankment*,
- Full depth milling and filling of existing asphalt pavements, replacement of concrete pavement slabs, and similar work that does not expose soil or disturb the bottom six (6) inches of subbase material,
- Long-term use of equipment storage areas at or near highway maintenance facilities,
- Removal of sediment from the edge of the highway to restore a previously existing sheet-flow drainage connection from the highway surface to the highway ditch or *embankment*,
- Existing use of Canal Corp owned upland disposal sites for the canal, and
- Replacement of curbs, gutters, sidewalks and guide rail posts.

Site limitations – means site conditions that prevent the use of an infiltration technique and or infiltration of the total WQv. Typical site limitations include: seasonal high groundwater, shallow depth to bedrock, and soils with an infiltration rate less than 0.5 inches/hour. The existence of site limitations shall be confirmed and documented using actual field testing (i.e. test pits, soil borings, and infiltration test) or using information from the most current United States Department of Agriculture (USDA) Soil Survey for the County where the project is located.

Sizing Criteria – means the criteria included in Part I.C.2 of the permit that are used to size post-construction stormwater management control practices. The criteria include; Water Quality Volume (WQv), Runoff Reduction Volume (RRv), Channel Protection Volume (Cpv), *Overbank* Flood (Qp), and Extreme Flood (Qf).

State Pollutant Discharge Elimination System (SPDES) - means the system established pursuant to Article 17 of the ECL and 6 NYCRR Part 750 for issuance of permits authorizing discharges to the waters of the state.

Steep Slope – means land area designated on the current United States Department of Agriculture ("USDA") Soil Survey as Soil Slope Phase "D", (provided the map unit name is inclusive of slopes greater than 25%), or Soil Slope Phase E or F, (regardless of the map unit name), or a combination of the three designations.

Streambank – as used in this permit, means the terrain alongside the bed of a creek or stream. The bank consists of the sides of the channel, between which the flow is confined.

Stormwater Pollution Prevention Plan (SWPPP) – means a project specific report, including construction drawings, that among other things: describes the construction activity(ies), identifies the potential sources of pollution at the *construction site*; describes and shows the stormwater controls that will be used to control the pollutants (i.e. erosion and sediment controls; for many projects, includes post-construction stormwater management controls); and identifies procedures the *owner or operator* will implement to comply with the terms and conditions of the permit. See Part III of the permit for a complete description of the information that must be included in the SWPPP.

Surface Waters of the State - shall be construed to include lakes, bays, sounds, ponds, impounding reservoirs, springs, rivers, streams, creeks, estuaries, marshes, inlets, canals, the Atlantic ocean within the territorial seas of the state of New York and all other bodies of surface water, natural or artificial, inland or coastal, fresh or salt, public or private (except those private waters that do not combine or effect a junction with natural surface waters), which are wholly or partially within or bordering the state or within its jurisdiction. Waters of the state are further defined in 6 NYCRR Parts 800 to 941.

Temporarily Ceased – means that an existing disturbed area will not be disturbed again within 14 calendar days of the previous soil disturbance.

Temporary Stabilization - means that exposed soil has been covered with material(s) as set forth in the technical standard, New York Standards and Specifications for Erosion and Sediment Control, to prevent the exposed soil from eroding. The materials can include, but are not limited to, mulch, seed and mulch, and erosion control mats (e.g. jute twisted yarn, excelsior wood fiber mats).

Total Maximum Daily Loads (TMDLs) - A TMDL is the sum of the allowable loads of a single pollutant from all contributing point and *nonpoint sources*. It is a calculation of the maximum amount of a pollutant that a waterbody can receive on a daily basis and still meet *water quality standards*, and an allocation of that amount to the pollutant's sources. A TMDL stipulates wasteload allocations (WLAs) for *point source* discharges, load allocations (LAs) for *nonpoint sources*, and a margin of safety (MOS).

Trained Contractor - means an employee from the contracting (construction) company, identified in Part III.A.6., that has received four (4) hours of Department endorsed

Appendix A

training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity. After receiving the initial training, the *trained contractor* shall receive four (4) hours of training every three (3) years.

It can also mean an employee from the contracting (construction) company, identified in Part III.A.6., that meets the *qualified inspector* qualifications (e.g. licensed Professional Engineer, Certified Professional in Erosion and Sediment Control (CPESC), Registered Landscape Architect, New York State Erosion and Sediment Control Certificate Program holder, or someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided they have received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity).

The *trained contractor* is responsible for the day to day implementation of the SWPPP.

Uniform Procedures Act (UPA) Permit - means a permit required under 6 NYCRR Part 621 of the Environmental Conservation Law (ECL), Article 70.

Water Quality Standard - means such measures of purity or quality for any waters in relation to their reasonable and necessary use as promulgated in 6 NYCRR Part 700 et seq.

APPENDIX B – Required SWPPP Components by Project Type

Table 1

Construction Activities that Require the Preparation of a SWPPP That Only Includes Erosion and Sediment Controls

The following construction activities that involve soil disturbances of one (1) or more acres of land, but less than five (5) acres: • Single family home not located in one of the watersheds listed in Appendix C or not *directly* discharging to one of the 303(d) segments listed in Appendix E Single family residential subdivisions with 25% or less impervious cover at total site build-out and not located in one of the watersheds listed in Appendix C and not directly discharging to one of the 303(d) segments listed in Appendix E • Construction of a barn or other agricultural building, silo, stock yard or pen. The following construction activities that involve soil disturbances between five thousand (5000) square feet and one (1) acre of land: All construction activities located in the watersheds identified in Appendix D that involve soil disturbances between five thousand (5,000) square feet and one (1) acre of land. The following construction activities that involve soil disturbances of one (1) or more acres of land: Installation of underground, linear utilities; such as gas lines, fiber-optic cable, cable TV, electric, telephone, sewer mains, and water mains · Environmental enhancement projects, such as wetland mitigation projects, stormwater retrofits and stream restoration projects Pond construction • Linear bike paths running through areas with vegetative cover, including bike paths surfaced with an impervious cover · Cross-country ski trails and walking/hiking trails Sidewalk, bike path or walking path projects, surfaced with an impervious cover, that are not part of residential, commercial or institutional development; • Sidewalk, bike path or walking path projects, surfaced with an impervious cover, that include incidental shoulder or curb work along an existing highway to support construction of the sidewalk,

- bike path or walking path.Slope stabilization projects
- Slope flattening that changes the grade of the site, but does not significantly change the runoff characteristics

Appendix B

Table 1 (Continued) CONSTRUCTION ACTIVITIES THAT REQUIRE THE PREPARATION OF A SWPPP

THAT ONLY INCLUDES EROSION AND SEDIMENT CONTROLS

The following construction activities that involve soil disturbances of one (1) or more acres of land:

- Spoil areas that will be covered with vegetation
- Vegetated open space projects (i.e. recreational parks, lawns, meadows, fields, downhill ski trails) excluding projects that *alter hydrology from pre to post development* conditions,
- Athletic fields (natural grass) that do not include the construction or reconstruction of *impervious* area and do not alter hydrology from pre to post development conditions
- · Demolition project where vegetation will be established, and no redevelopment is planned
- Overhead electric transmission line project that does not include the construction of permanent access roads or parking areas surfaced with *impervious cover*
- Structural practices as identified in Table II in the "Agricultural Management Practices Catalog for Nonpoint Source Pollution in New York State", excluding projects that involve soil disturbances of greater than five acres and construction activities that include the construction or reconstruction of impervious area
- Temporary access roads, median crossovers, detour roads, lanes, or other temporary impervious areas that will be restored to pre-construction conditions once the construction activity is complete

Table 2

CONSTRUCTION ACTIVITIES THAT REQUIRE THE PREPARATION OF A SWPPP THAT INCLUDES POST-CONSTRUCTION STORMWATER MANAGEMENT PRACTICES

The following construction activities that involve soil disturbances of one (1) or more acres of land:

- Single family home located in one of the watersheds listed in Appendix C or *directly discharging* to one of the 303(d) segments listed in Appendix E
- Single family home that disturbs five (5) or more acres of land
- Single family residential subdivisions located in one of the watersheds listed in Appendix C or *directly discharging* to one of the 303(d) segments listed in Appendix E
- Single family residential subdivisions that involve soil disturbances of between one (1) and five (5) acres of land with greater than 25% impervious cover at total site build-out
- Single family residential subdivisions that involve soil disturbances of five (5) or more acres of land, and single family residential subdivisions that involve soil disturbances of less than five (5) acres that are part of a larger common plan of development or sale that will ultimately disturb five or more acres of land
- Multi-family residential developments; includes duplexes, townhomes, condominiums, senior housing complexes, apartment complexes, and mobile home parks
- Airports
- Amusement parks
- · Breweries, cideries, and wineries, including establishments constructed on agricultural land
- Campgrounds
- Cemeteries that include the construction or reconstruction of impervious area (>5% of disturbed area) or *alter the hydrology from pre to post development* conditions
- Commercial developments
- Churches and other places of worship
- Construction of a barn or other *agricultural building* (e.g. silo) and structural practices as identified in Table II in the "Agricultural Management Practices Catalog for Nonpoint Source Pollution in New York State" that include the construction or reconstruction of *impervious area*, excluding projects that involve soil disturbances of less than five acres.
- Golf courses
- Institutional development; includes hospitals, prisons, schools and colleges
- Industrial facilities; includes industrial parks
- Landfills
- Municipal facilities; includes highway garages, transfer stations, office buildings, POTW's, water treatment plants, and water storage tanks
- Office complexes
- · Playgrounds that include the construction or reconstruction of impervious area
- Sports complexes
- · Racetracks; includes racetracks with earthen (dirt) surface
- Road construction or reconstruction, including roads constructed as part of the construction activities listed in Table 1

Table 2 (Continued)

CONSTRUCTION ACTIVITIES THAT REQUIRE THE PREPARATION OF A SWPPP THAT INCLUDES POST-CONSTRUCTION STORMWATER MANAGEMENT PRACTICES

The following construction activities that involve soil disturbances of one (1) or more acres of land:

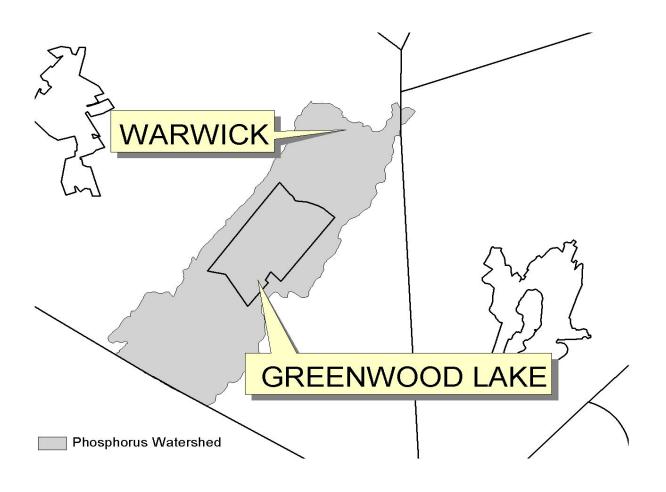
- Parking lot construction or reconstruction, including parking lots constructed as part of the construction activities listed in Table 1
- Athletic fields (natural grass) that include the construction or reconstruction of impervious area (>5% of disturbed area) or *alter the hydrology from pre to post development* conditions
- Athletic fields with artificial turf
- Permanent access roads, parking areas, substations, compressor stations and well drilling pads, surfaced with *impervious cover*, and constructed as part of an over-head electric transmission line project, wind-power project, cell tower project, oil or gas well drilling project, sewer or water main project or other linear utility project
- Sidewalk, bike path or walking path projects, surfaced with an impervious cover, that are part of a residential, commercial or institutional development
- Sidewalk, bike path or walking path projects, surfaced with an impervious cover, that are part of a highway construction or reconstruction project
- All other construction activities that include the construction or reconstruction of *impervious area* or *alter the hydrology from pre to post development* conditions, and are not listed in Table 1

APPENDIX C – Watersheds Requiring Enhanced Phosphorus Removal

Watersheds where *owners or operators* of construction activities identified in Table 2 of Appendix B must prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with the Enhanced Phosphorus Removal Standards included in the technical standard, New York State Stormwater Management Design Manual ("Design Manual").

- Entire New York City Watershed located east of the Hudson River Figure 1
- Onondaga Lake Watershed Figure 2
- Greenwood Lake Watershed -Figure 3
- Oscawana Lake Watershed Figure 4
- Kinderhook Lake Watershed Figure 5

Figure 1 - New York City Watershed East of the Hudson



Appendix C

Figure 3 - Greenwood Lake Watershed

Figure 4 - Oscawana Lake Watershed

Figure 5 - Kinderhook Lake Watershed

APPENDIX D – Watersheds with Lower Disturbance Threshold

Watersheds where *owners or operators* of construction activities that involve soil disturbances between five thousand (5000) square feet and one (1) acre of land must obtain coverage under this permit.

Entire New York City Watershed that is located east of the Hudson River - See Figure 1 in Appendix C

APPENDIX E – 303(d) Segments Impaired by Construction Related Pollutant(s)

List of 303(d) segments impaired by pollutants related to *construction activity* (e.g. silt, sediment or nutrients). The list was developed using "The Final New York State 2016 Section 303(d) List of Impaired Waters Requiring a TMDL/Other Strategy" dated November 2016. *Owners or operators* of single family home and single family residential subdivisions with 25% or less total impervious cover at total site build-out that involve soil disturbances of one or more acres of land, but less than 5 acres, and *directly discharge* to one of the listed segments below shall prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with the New York State Stormwater Management Design Manual ("Design Manual"), dated January 2015.

COUNTY	WATERBODY	POLLUTANT
Albany	Ann Lee (Shakers) Pond, Stump Pond	Nutrients
Albany	Basic Creek Reservoir	Nutrients
Allegany	Amity Lake, Saunders Pond	Nutrients
Bronx	Long Island Sound, Bronx	Nutrients
Bronx	Van Cortlandt Lake	Nutrients
Broome	Fly Pond, Deer Lake, Sky Lake	Nutrients
Broome	Minor Tribs to Lower Susquehanna (north)	Nutrients
Broome	Whitney Point Lake/Reservoir	Nutrients
Cattaraugus	Allegheny River/Reservoir	Nutrients
Cattaraugus	Beaver (Alma) Lake	Nutrients
Cattaraugus	Case Lake	Nutrients
Cattaraugus	Linlyco/Club Pond Nutrients	
Cayuga	Duck Lake Nutrients	
Cayuga	Little Sodus Bay Nutrients	
Chautauqua	Bear Lake Nutrients	
Chautauqua	Chadakoin River and tribs Nutrients	
Chautauqua	Chautauqua Lake, North Nutrients	
Chautauqua	Chautauqua Lake, South Nutrients	
Chautauqua	Findley Lake Nutrients	
Chautauqua	Hulburt/Clymer Pond Nutrients	
Clinton	Great Chazy River, Lower, Main Stem Silt/Sediment	
Clinton	Lake Champlain, Main Lake, Middle Nutrients	
Clinton	Lake Champlain, Main Lake, North Nutrients	
Columbia	Kinderhook Lake Nutrients	
Columbia	Robinson Pond Nutrients	
Cortland	Dean Pond Nutrients	

Dutchess	Fall Kill and tribs	Nutrients	
Dutchess	Hillside Lake Nutrients		
Dutchess	Wappingers Lake Nutrients		
Dutchess	Wappingers Lake Silt/Sediment		
Erie	Beeman Creek and tribs Nutrients		
Erie	Ellicott Creek, Lower, and tribs Silt/Sedimer		
Erie	Ellicott Creek, Lower, and tribs	Nutrients	
Erie	Green Lake	Nutrients	
Erie	Little Sister Creek, Lower, and tribs	Nutrients	
Erie	Murder Creek, Lower, and tribs	Nutrients	
Erie	Rush Creek and tribs	Nutrients	
Erie	Scajaquada Creek, Lower, and tribs	Nutrients	
Erie	Scajaquada Creek, Middle, and tribs	Nutrients	
Erie	Scajaquada Creek, Upper, and tribs	Nutrients	
Erie	South Branch Smoke Cr, Lower, and tribs	Silt/Sediment	
Erie	South Branch Smoke Cr, Lower, and tribs	Nutrients	
Essex	Lake Champlain, Main Lake, SouthNutrients		
Essex	Lake Champlain, South LakeNutrients		
Essex	Willsboro Bay Nutrients		
Genesee	Bigelow Creek and tribs Nutrient		
Genesee	Black Creek, Middle, and minor tribs Nutrient		
Genesee	Black Creek, Upper, and minor tribs Nutrients		
Genesee	Bowen Brook and tribs Nutrients		
Genesee	LeRoy Reservoir Nutrients		
Genesee	Oak Orchard Cr, Upper, and tribs Nutrients		
Genesee	Tonawanda Creek, Middle, Main Stem Nutrients		
Greene	Schoharie Reservoir	Silt/Sediment	
Greene	Sleepy Hollow Lake Silt/Sediment		
Herkimer	Steele Creek tribs Silt/Sediment		
Herkimer	Steele Creek tribs Nutrients		
Jefferson	Moon Lake Nutrients		
Kings	Hendrix Creek Nutrients		
Kings	Prospect Park Lake Nutrients		
Lewis	Mill Creek/South Branch, and tribs Nutrients		
Livingston	Christie Creek and tribs Nutrients		
Livingston	Conesus Lake Nutrients		
Livingston	Mill Creek and minor tribs Silt/Sediment		
Monroe	Black Creek, Lower, and minor tribs Nutrients		
Monroe	Buck Pond		
Monroe	Cranberry Pond		

Monroe	Lake Ontario Shoreline, Western	Nutrients	
Monroe	Long Pond Nutrients		
Monroe	Mill Creek and tribs Nutrients		
Monroe	Mill Creek/Blue Pond Outlet and tribs Nutrients		
Monroe	Minor Tribs to Irondequoit Bay Nutrients		
Monroe	Rochester Embayment - EastNutrients		
Monroe	Rochester Embayment - West	Nutrients	
Monroe	Shipbuilders Creek and tribs	Nutrients	
Monroe	Thomas Creek/White Brook and tribs	Nutrients	
Nassau	Beaver Lake	Nutrients	
Nassau	Camaans Pond	Nutrients	
Nassau	East Meadow Brook, Upper, and tribs	Silt/Sediment	
Nassau	East Rockaway Channel	Nutrients	
Nassau	Grant Park Pond	Nutrients	
Nassau	Hempstead Bay	Nutrients	
Nassau	Hempstead Lake	Nutrients	
Nassau	Hewlett Bay	Nutrients	
Nassau	Hog Island Channel Nutrients		
Nassau	Long Island Sound, Nassau County Waters Nutrients		
Nassau	Massapequa Creek and tribs Nutrients		
Nassau	Milburn/Parsonage Creeks, Upp, and tribs Nutrients		
Nassau	Reynolds Channel, west Nutrients		
Nassau	Tidal Tribs to Hempstead Bay Nutrients		
Nassau	Tribs (fresh) to East Bay		
Nassau	Tribs (fresh) to East Bay		
Nassau	Tribs to Smith/Halls Ponds		
Nassau	Woodmere Channel		
New York	Harlem Meer Nutrients		
New York	The Lake in Central Park Nutrients		
Niagara	Bergholtz Creek and tribs Nutrients		
Niagara	Hyde Park Lake Nutrients		
Niagara	Lake Ontario Shoreline, WesternNutrients		
Niagara	Lake Ontario Shoreline, WesternNutrients		
Oneida	Ballou, Nail Creeks and tribs Nutrients		
Onondaga	Harbor Brook, Lower, and tribs Nutrients		
Onondaga	Ley Creek and tribs Nutrients		
Onondaga	Minor Tribs to Onondaga Lake Nutrients		
Onondaga	Ninemile Creek, Lower, and tribs		
Onondaga	Onondaga Creek, Lower, and tribs	Nutrients	
Onondaga	Onondaga Creek, Middle, and tribs		

Onondaga	Onondaga Lake, northern end	Nutrients	
Onondaga	Onondaga Lake, southern end Nutrients		
Ontario	Great Brook and minor tribs Silt/Sedimer		
Ontario	Great Brook and minor tribs Nutrients		
Ontario	Hemlock Lake Outlet and minor tribs Nutrients		
Ontario	Honeoye Lake Outlet and minor tribs Nutrients Nutrients		
Orange	Greenwood Lake	Nutrients	
Orange	Monhagen Brook and tribs	Nutrients	
Orange	Orange Lake	Nutrients	
Orleans	Lake Ontario Shoreline, Western	Nutrients	
Orleans	Lake Ontario Shoreline, Western	Nutrients	
Oswego	Lake Neatahwanta	Nutrients	
Oswego	Pleasant Lake	Nutrients	
Putnam	Bog Brook Reservoir	Nutrients	
Putnam	Boyd Corners Reservoir	Nutrients	
Putnam	Croton Falls Reservoir	Nutrients	
Putnam	Diverting Reservoir Nutrients		
Putnam	East Branch Reservoir Nutrients		
Putnam	Lake Carmel Nutrients		
Putnam	Middle Branch Reservoir Nutrient		
Putnam	Oscawana Lake Nutrients		
Putnam	Palmer Lake Nutrients		
Putnam	West Branch Reservoir Nutrients		
Queens	Bergen Basin	in Nutrients	
Queens	Flushing Creek/Bay Nutrients		
Queens	Jamaica Bay, Eastern, and tribs (Queens) Nutrients		
Queens	Kissena Lake Nutrients		
Queens	Meadow Lake Nutrients		
Queens	Willow Lake Nutrients		
Rensselaer	Nassau Lake Nutrients		
Rensselaer	Snyders Lake Nutrients		
Richmond	Grasmere Lake/Bradys Pond Nutrients		
Rockland	Congers Lake, Swartout Lake Nutrients		
Rockland	Rockland Lake Nutrients		
Saratoga	Ballston Lake Nutrients		
Saratoga	Dwaas Kill and tribs Silt/Sediment		
Saratoga	Dwaas Kill and tribs Didy Sediment Dwaas Kill and tribs Nutrients		
Saratoga	Lake Lonely	Nutrients	
Saratoga	Round Lake		
Saratoga	Tribs to Lake Lonely	Nutrients	

Schenectady	Collins Lake	Nutrients
Schenectady	Duane Lake Nutrients	
Schenectady	Mariaville Lake Nutrients	
Schoharie	Engleville Pond Nutrients	
Schoharie	Summit Lake Nutrients	
Seneca	Reeder Creek and tribs Nutrients	
St.Lawrence	Black Lake Outlet/Black Lake	Nutrients
St.Lawrence	Fish Creek and minor tribs	Nutrients
Steuben	Smith Pond	Nutrients
Suffolk	Agawam Lake	Nutrients
Suffolk	Big/Little Fresh Ponds	Nutrients
Suffolk	Canaan Lake	Silt/Sediment
Suffolk	Canaan Lake	Nutrients
Suffolk	Flanders Bay, West/Lower Sawmill Creek	Nutrients
Suffolk	Fresh Pond	Nutrients
Suffolk	Great South Bay, East	Nutrients
Suffolk	Great South Bay, Middle Nutrients	
Suffolk	Great South Bay, West Nutrients	
Suffolk	Lake Ronkonkoma Nutrients	
Suffolk	Long Island Sound, Suffolk County, West Nutrien	
Suffolk	Mattituck (Marratooka) Pond Nutrien	
Suffolk	Meetinghouse/Terrys Creeks and tribs Nutrient	
Suffolk	Mill and Seven Ponds Nutrients	
Suffolk	Millers Pond Nutrients	
Suffolk	Moriches Bay, East Nutrients	
Suffolk	Moriches Bay, West Nutrients	
Suffolk	Peconic River, Lower, and tidal tribs Nutrients	
Suffolk	Quantuck Bay Nutrients	
Suffolk	Shinnecock Bay and Inlet Nutrients	
Suffolk	Tidal tribs to West Moriches BayNutrients	
Sullivan	Bodine, Montgomery Lakes Nutrients	
Sullivan	Davies Lake Nutrients	
Sullivan	Evens Lake Nutrients	
Sullivan	Pleasure Lake Nutrients	
Tompkins	Cayuga Lake, Southern End Nutrients	
Tompkins	Cayuga Lake, Southern End Silt/Sediment	
Tompkins	Owasco Inlet, Upper, and tribs Nutrients	
Ulster	Ashokan Reservoir Silt/Sediment	
Ulster	Esopus Creek, Upper, and minor tribs	Silt/Sediment
Warren	Hague Brook and tribs Silt/Sediment	

Warren	Huddle/Finkle Brooks and tribs Silt/Sediment		
Warren	Indian Brook and tribs Silt/Sedimer		
Warren	Lake George Silt/Sedimen		
Warren	Tribs to L.George, Village of L George Silt/Sedime		
Washington	Cossayuna Lake Nutrients		
Washington	Lake Champlain, South Bay	Nutrients	
Washington	Tribs to L.George, East Shore Silt/Sedime		
Washington	Wood Cr/Champlain Canal and minor tribs	Nutrients	
Wayne	Port Bay	Nutrients	
Westchester	Amawalk Reservoir	Nutrients	
Westchester	Blind Brook, Upper, and tribs	Silt/Sediment	
Westchester	Cross River Reservoir	Nutrients	
Westchester	Lake Katonah	Nutrients	
Westchester	Lake Lincolndale Nutrients		
Westchester	Lake Meahagh Nutrients		
Westchester	Lake Mohegan Nutrients		
Westchester	Lake Shenorock Nutrients		
Westchester	Long Island Sound, Westchester (East) Nutrients		
Westchester	Mamaroneck River, Lower Silt/Sedin		
Westchester	Mamaroneck River, Upper, and minor tribs Silt/Sedime		
Westchester	Muscoot/Upper New Croton Reservoir	on Reservoir Nutrients	
Westchester	New Croton Reservoir Nutrients		
Westchester	Peach Lake Nutrients		
Westchester	Reservoir No.1 (Lake Isle)	oir No.1 (Lake Isle) Nutrients	
Westchester	Saw Mill River, Lower, and tribs Nutrients		
Westchester	Saw Mill River, Middle, and tribs Nutrients		
Westchester	Sheldrake River and tribs Silt/Sediment		
Westchester	Sheldrake River and tribs Nutrients		
Westchester	Silver Lake Nutrients		
Westchester	Teatown Lake Nutrients		
Westchester	Titicus Reservoir Nutrients		
Westchester	Truesdale Lake Nutrients		
Westchester	Wallace Pond	Nutrients	
Wyoming	Java Lake	Java Lake Nutrients	
Wyoming	Silver Lake Nutrients		

<u>Region</u>	<u>Covering the</u> <u>FOLLOWING COUNTIES:</u>	DIVISION OF ENVIRONMENTAL PERMITS (DEP) <u>PERMIT ADMINISTRATORS</u>	DIVISION OF WATER (DOW) <u>Water (SPDES) Program</u>
1	NASSAU AND SUFFOLK	50 Circle Road Stony Brook, Ny 11790 Tel. (631) 444-0365	50 CIRCLE ROAD Stony Brook, Ny 11790-3409 Tel. (631) 444-0405
2	BRONX, KINGS, NEW YORK, QUEENS AND RICHMOND	1 Hunters Point Plaza, 47-40 21st St. Long Island City, Ny 11101-5407 Tel. (718) 482-4997	1 Hunters Point Plaza, 47-40 21st St. Long Island City, Ny 11101-5407 Tel. (718) 482-4933
3	DUTCHESS, ORANGE, PUTNAM, Rockland, Sullivan, Ulster and Westchester	21 South Putt Corners Road New Paltz, Ny 12561-1696 Tel. (845) 256-3059	100 HILLSIDE AVENUE, SUITE 1W WHITE PLAINS, NY 10603 TEL. (914) 428 - 2505
4	ALBANY, COLUMBIA, DELAWARE, GREENE, MONTGOMERY, OTSEGO, RENSSELAER, SCHENECTADY AND SCHOHARIE	1150 North Westcott Road Schenectady, Ny 12306-2014 Tel. (518) 357-2069	1130 North Westcott Road Schenectady, Ny 12306-2014 Tel. (518) 357-2045
5	CLINTON, ESSEX, FRANKLIN, Fulton, Hamilton, Saratoga, Warren and Washington	1115 State Route 86, Ро Вох 296 Ray Brook, Ny 12977-0296 Tel. (518) 897-1234	232 GOLF COURSE ROAD WARRENSBURG, NY 12885-1172 TEL. (518) 623-1200
6	HERKIMER, JEFFERSON, LEWIS, ONEIDA AND ST. LAWRENCE	STATE OFFICE BUILDING 317 WASHINGTON STREET WATERTOWN, NY 13601-3787 TEL. (315) 785-2245	STATE OFFICE BUILDING 207 GENESEE STREET UTICA, NY 13501-2885 TEL. (315) 793-2554
7	BROOME, CAYUGA, CHENANGO, CORTLAND, MADISON, ONONDAGA, OSWEGO, TIOGA AND TOMPKINS	615 ERIE BLVD. WEST SYRACUSE, NY 13204-2400 TEL. (315) 426-7438	615 ERIE BLVD. WEST SYRACUSE, NY 13204-2400 TEL. (315) 426-7500
8	CHEMUNG, GENESEE, LIVINGSTON, MONROE, ONTARIO, ORLEANS, SCHUYLER, SENECA, STEUBEN, WAYNE AND YATES	6274 EAST AVON-LIMA ROADAVON, NY 14414-9519 TEL. (585) 226-2466	6274 EAST AVON-LIMA RD. AVON, NY 14414-9519 TEL. (585) 226-2466
9	ALLEGANY, CATTARAUGUS, CHAUTAUQUA, ERIE, NIAGARA AND WYOMING	270 MICHIGAN AVENUE BUFFALO, NY 14203-2999 TEL. (716) 851-7165	270 MICHIGAN AVENUE BUFFALO, NY 14203-2999 TEL. (716) 851-7070

APPENDIX F – List of NYS DEC Regional Offices

Appendix G

Erosion & Sediment Control Plan Review Checklist

Appendix H

Construction Site Log Book

APPENDIX F CONSTRUCTION SITE INSPECTION AND MAINTENANCE LOG BOOK

STATE POLLUTANT DISCHARGE ELIMINATION SYSTEM FOR CONSTRUCTION ACTIVITIES

SAMPLE CONSTRUCTION SITE LOG BOOK

Table of Contents

- I. Pre-Construction Meeting Documents
 - a. Preamble to Site Assessment and Inspections
 - b. Pre-Construction Site Assessment Checklist

II. Construction Duration Inspections

- a. Directions
- b. Modification to the SWPPP

I. PRE-CONSTRUCTION MEETING DOCUMENTS

Project Name	
Permit No.	Date of Authorization
Name of Operator	
Prime Contractor	

a. Preamble to Site Assessment and Inspections

The Following Information To Be Read By All Person's Involved in The Construction of Stormwater Related Activities:

The Operator agrees to have a qualified inspector¹ conduct an assessment of the site prior to the commencement of construction² and certify in this inspection report that the appropriate erosion and sediment controls described in the SWPPP have been adequately installed or implemented to ensure overall preparedness of the site for the commencement of construction.

Prior to the commencement of construction, the Operator shall certify in this site logbook that the SWPPP has been prepared in accordance with the State's standards and meets all Federal, State and local erosion and sediment control requirements. A preconstruction meeting should be held to review all of the SWPPP requirements with construction personnel.

When construction starts, site inspections shall be conducted by the qualified inspector at least every 7 calendar days. The Operator shall maintain a record of all inspection reports in this site logbook. The site logbook shall be maintained on site and be made available to the permitting authorities upon request.

Prior to filing the Notice of Termination or the end of permit term, the Operator shall have a qualified inspector perform a final site inspection. The qualified inspector shall certify that the site has undergone final stabilization³ using either vegetative or structural stabilization methods and that all temporary erosion and sediment controls (such as silt fencing) not needed for long-term erosion control have been removed. In addition, the Operator must identify and certify that all permanent structures described in the SWPPP have been constructed and provide the owner(s) with an operation and maintenance plan that ensures the structure(s) continuously functions as designed.

1 Refer to "Qualified Inspector" inspection requirements in the current SPDES General Permit for Stormwater Discharges from Construction Activity for complete list of inspection requirements.

3 "Final stabilization" means that all soil-disturbing activities at the site have been completed and a uniform, perennial vegetative cover with a density of eighty (80) percent has been established or equivalent stabilization measures (such as the use of mulches or geotextiles) have been employed on all unpaved areas and areas not covered by permanent structures.

^{2 &}quot;Commencement of construction" means the initial removal of vegetation and disturbance of soils associated with clearing, grading or excavating activities or other construction activities.

b. Pre-construction Site Assessment Checklist (NOTE: Provide comments below as necessary)

1. Notice of Intent, SWPPP, and Contractors Certification:

Yes No NA

- [] [] Has a Notice of Intent been filed with the NYS Department of Conservation?
- [] [] [] Is the SWPPP on-site? Where?
- [] [] [] Is the Plan current? What is the latest revision date?_____
- [] [] Have all contractors involved with stormwater related activities signed a contractor's certification?

2. Resource Protection

Yes No NA

- [] [] Are construction limits clearly flagged or fenced?
- [] [] [] Important trees and associated rooting zones, on-site septic system absorption fields, existing vegetated areas suitable for filter strips, especially in perimeter areas, have been flagged for protection.
- [] [] Creek crossings installed prior to land-disturbing activity, including clearing and blasting.
- 3. Surface Water Protection

Yes No NA

- [] [] Clean stormwater runoff has been diverted from areas to be disturbed.
- [] [] Bodies of water located either on site or in the vicinity of the site have been identified and protected.
- [] [] Appropriate practices to protect on-site or downstream surface water are installed.
- [] [] Are clearing and grading operations divided into areas <5 acres?

4. Stabilized Construction Access

Yes No NA

- [] [] A temporary construction entrance to capture mud and debris from construction vehicles before they enter the public highway has been installed.
- [] [] Other access areas (entrances, construction routes, equipment parking areas) are stabilized immediately as work takes place with gravel or other cover.
- [] [] Sediment tracked onto public streets is removed or cleaned on a regular basis.
- 5. Sediment Controls

Yes No NA

- [] [] Silt fence material and installation comply with the standard drawing and specifications.
- [] [] Silt fences are installed at appropriate spacing intervals
- [] [] Sediment/detention basin was installed as first land disturbing activity.
- [] [] [] Sediment traps and barriers are installed.

6. Pollution Prevention for Waste and Hazardous Materials

Yes No NA

- [] [] The Operator or designated representative has been assigned to implement the spill prevention avoidance and response plan.
- [] [] The plan is contained in the SWPPP on page _
- [] [] Appropriate materials to control spills are onsite. Where?

II. CONSTRUCTION DURATION INSPECTIONS

a. Directions:

Inspection Forms will be filled out during the entire construction phase of the project.

Required Elements:

- 1) On a site map, indicate the extent of all disturbed site areas and drainage pathways. Indicate site areas that are expected to undergo initial disturbance or significant site work within the next 14-day period;
- 2) Indicate on a site map all areas of the site that have undergone temporary or permanent stabilization;
- 3) Indicate all disturbed site areas that have not undergone active site work during the previous 14-day period;
- 4) Inspect all sediment control practices and record the approximate degree of sediment accumulation as a percentage of sediment storage volume (for example, 10 percent, 20 percent, 50 percent);
- 5) Inspect all erosion and sediment control practices and record all maintenance requirements such as verifying the integrity of barrier or diversion systems (earthen berms or silt fencing) and containment systems (sediment basins and sediment traps). Identify any evidence of rill or gully erosion occurring on slopes and any loss of stabilizing vegetation or seeding/mulching. Document any excessive deposition of sediment or ponding water along barrier or diversion systems. Record the depth of sediment within containment structures, any erosion near outlet and overflow structures, and verify the ability of rock filters around perforated riser pipes to pass water; and
- 6) Immediately report to the Operator any deficiencies that are identified with the implementation of the SWPPP.

SITE PLAN/SKETCH

 Inspector (print name)
 Date of Inspection

 Qualified Inspector (print name)
 Qualified Inspector Signature

The above signed acknowledges that, to the best of his/her knowledge, all information provided on the forms is accurate and complete.

CONSTRUCTION DURATION INSPECTIONS

Maintaining Water Quality

Yes No NA

- [] [] Is there an increase in turbidity causing a substantial visible contrast to natural conditions at the outfalls?
- [] [] Is there residue from oil and floating substances, visible oil film, or globules or grease at the outfalls?
- [] [] All disturbance is within the limits of the approved plans.
- [] [] Have receiving lake/bay, stream, and/or wetland been impacted by silt from project?

Housekeeping

1. General Site Conditions

Yes No NA

- [] [] [] Is construction site litter, debris and spoils appropriately managed?
- [] [] [] Are facilities and equipment necessary for implementation of erosion and sediment control in working order and/or properly maintained?
- [] [] [] Is construction impacting the adjacent property?
- [] [] [] Is dust adequately controlled?

2. Temporary Stream Crossing

Yes No NA

- [] [] Maximum diameter pipes necessary to span creek without dredging are installed.
- [] [] Installed non-woven geotextile fabric beneath approaches.
- [] [] Is fill composed of aggregate (no earth or soil)?
- [] [] Rock on approaches is clean enough to remove mud from vehicles & prevent sediment from entering stream during high flow.
- 3. Stabilized Construction Access

Yes No NA

- [] [] Stone is clean enough to effectively remove mud from vehicles.
- [] [] [] Installed per standards and specifications?
- [] [] Does all traffic use the stabilized entrance to enter and leave site?
- [] [] [] Is adequate drainage provided to prevent ponding at entrance?

Runoff Control Practices

1. Excavation Dewatering

Yes No NA

- [] [] Upstream and downstream berms (sandbags, inflatable dams, etc.) are installed per plan.
- [] [] Clean water from upstream pool is being pumped to the downstream pool.
- [] [] Sediment laden water from work area is being discharged to a silt-trapping device.
- [] [] Constructed upstream berm with one-foot minimum freeboard.

Runoff Control Practices (continued)

2. Flow Spreader

Yes No NA

- [] [] [] Installed per plan.
- [] [] Constructed on undisturbed soil, not on fill, receiving only clear, non-sediment laden flow.
- [] [] Flow sheets out of level spreader without erosion on downstream edge.

3. Interceptor Dikes and Swales

Yes No NA

- [] [] [] Installed per plan with minimum side slopes 2H:1V or flatter.
- [] [] Stabilized by geotextile fabric, seed, or mulch with no erosion occurring.
- [] [] [] Sediment-laden runoff directed to sediment trapping structure

4. Stone Check Dam

Yes No NA

- [] [] [] Is channel stable? (flow is not eroding soil underneath or around the structure).
- [] [] Check is in good condition (rocks in place and no permanent pools behind the structure).
- [] [] Has accumulated sediment been removed?.

5. Rock Outlet Protection

Yes No NA

- [] [] [] Installed per plan.
- [] [] Installed concurrently with pipe installation.

Soil Stabilization

1. Topsoil and Spoil Stockpiles

Yes No NA

- [] [] [] Stockpiles are stabilized with vegetation and/or mulch.
- [] [] Sediment control is installed at the toe of the slope.

2. Revegetation

Yes No NA

- [] [] [] Temporary seedings and mulch have been applied to idle areas.
- [] [] 4 inches minimum of topsoil has been applied under permanent seedings

Sediment Control Practices

1. Silt Fence and Linear Barriers

Yes No NA

- [] [] Installed on Contour, 10 feet from toe of slope (not across conveyance channels).
- [] [] Joints constructed by wrapping the two ends together for continuous support.
- [] [] Fabric buried 6 inches minimum.
- [] [] Posts are stable, fabric is tight and without rips or frayed areas.

Sediment accumulation is ___% of design capacity.

CONSTRUCTION DURATION INSPECTIONS

Page 4 of _____

Sediment Control Practices (continued)

2. Storm Drain Inlet Protection (Use for Stone & Block; Filter Fabric; Curb; or, Excavated; Filter Sock or Manufactured practices)

Yes No NA

- [] [] Installed concrete blocks lengthwise so open ends face outward, not upward.
- [] [] Placed wire screen between No. 3 crushed stone and concrete blocks.
- [] [] Drainage area is 1acre or less.
- [] [] [] Excavated area is 900 cubic feet.
- [] [] Excavated side slopes should be 2:1.
- [] [] 2" x 4" frame is constructed and structurally sound.
- [] [] Posts 3-foot maximum spacing between posts.
- [] [] Fabric is embedded 1 to 1.5 feet below ground and secured to frame/posts with staples at max 8-inch spacing.
- [] [] Posts are stable, fabric is tight and without rips or frayed areas.
- [] [] [] Manufactured insert fabric is free of tears and punctures.
- [] [] Filter Sock is not torn or flattened and fill material is contained within the mesh sock.

Sediment accumulation <u>%</u> of design capacity.

3. Temporary Sediment Trap

Yes No NA

- [] [] Outlet structure is constructed per the approved plan or drawing.
- [] [] Geotextile fabric has been placed beneath rock fill.
- [] [] Sediment trap slopes and disturbed areas are stabilized.

Sediment accumulation is ___% of design capacity.

4. Temporary Sediment Basin

Yes No NA

- [] [] Basin and outlet structure constructed per the approved plan.
- [] [] Basin side slopes are stabilized with seed/mulch.
- [] [] Drainage structure flushed and basin surface restored upon removal of sediment basin facility.
- [] [] Sediment basin dewatering pool is dewatering at appropriate rate.

Sediment accumulation is ___% of design capacity.

<u>Note</u>: Not all erosion and sediment control practices are included in this listing. Add additional pages to this list as required by site specific design. All practices shall be maintained in accordance with their respective standards.

Construction inspection checklists for post-development stormwater management practices can be found in Appendix F of the New York Stormwater Management Design Manual.

CONSTRUCTION DURATION INSPECTIONS

b. Modifications to the SWPPP (To be completed as described below)

The Operator shall amend the SWPPP whenever:

- 1. There is a significant change in design, construction, operation, or maintenance which may have a significant effect on the potential for the discharge of pollutants to the waters of the United States and which has not otherwise been addressed in the SWPPP; or
- 2. The SWPPP proves to be ineffective in:
 - a. Eliminating or significantly minimizing pollutants from sources identified in the SWPPP and as required by this permit; or
 - b. Achieving the general objectives of controlling pollutants in stormwater discharges from permitted construction activity; and
- 3. Additionally, the SWPPP shall be amended to identify any new contractor or subcontractor that will implement any measure of the SWPPP.

Modification & Reason:

Appendix I Agency Correspondence

Appendix J Corrective Action Log

Appendix K Revisions to the SWPPP